Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

冉冉上升的希望──致 尋找著幸福的我們

貓心
・2015/03/06 ・2020字 ・閱讀時間約 4 分鐘 ・SR值 478 ・五年級

這是一個飄著細雨的元宵節。我和攝影師強者我朋友到了平溪去拍天燈。

在人山人海的會場,聽著主持人的一句句祝福,不外乎又是要幸福美滿的過日子。

十分,真是一個會讓人聯想到幸福的地方。

但是,幸福又是什麼呢?看著飄著細雨的天空,天燈冉冉的上升,我不禁又開始思考這個問題。

-----廣告,請繼續往下閱讀-----

IMG_1502我們好像都以為,只要能夠談戀愛,那就會過得比較快樂。

但是有充分的研究告訴我們,真正讓我們快樂的不是戀愛本身,而是一段關係的好壞[1]。換言之,真正決定一個人快樂與否的原因,並不是戀愛本身。所以真正的魯蛇,並不是交不到另一半的人,真正的溫拿,也不是那一些在關係中的。

我們常常說,戀愛中要找尋對的人。但是,那個對的人又是什麼呢?根據國內的心理學研究,我們要的不外乎就是:信任、溫柔、體貼、踏實、穩重、幽默、專情、身體健康,最重要的是要能了解彼此,要能夠有精神上的溝通[2]。但是,我們也都會常常聽到,「當初她明明跟我說她喜歡幽默體貼的男生,怎麼找了一個跟木頭一樣的男生?」、「她跟我說她喜歡高高帥帥又愛運動的男生時,我還高興了一下,可是她卻跟那一個不愛運動的宅男在一起,我真搞不懂她在想什麼。」我們選擇的,真的是我們想要的嗎?我們又真的清楚,我們想要的是什麼樣的愛情嗎?每次都希望這是最後一次受傷了,要找一段穩定一點的愛情,結果卻又找到了再次讓自己受同樣傷的人[3]。

我們真的知道,我們要的是什麼嗎?或是就算知道了,我們有辦法真的走到那裡嗎?

-----廣告,請繼續往下閱讀-----

如果你想要一段穩定的關係,那應該要找一個EQ高一點的,比較不神經質的人[4]。但是,對那一些神經質的人,不安全依附的人而言,是不是就天生這麼雖,注定得不到一段幸福美滿的愛情?那如果你不幸是安全感很低的,在愛情裡面很容易焦慮的人,那又該怎麼辦呢?

如果你不想再次陷入悲慘愛情的循環,倒也不是什麼都不能做。也許你可以期待一個安全感很高的人來帶你走出去,但是,與其讓另一半這麼累,是不是自己也能嘗試著做些什麼呢?

許多諮商師會告訴你,覺察自己情緒是很重要的。在我們面對情緒之後,是不是能夠了解當時到底發生了些什麼事情。如果能夠確實的了解自己的情緒,那才更有可能改變。關於這一點,我可以推薦給你一篇我寫的部落格(延伸閱讀:那些愛情裡讓我們爭執的大小事──如何找回愛情裡的安全感),或是看一看正向心理學家Seligman所寫的《樂觀學習,學習樂觀》,但是我更強烈建議你,去找個你能信任的心理諮商師吧!因為和書比起來,心理諮商師會為你精心設計適合你的方式。

當然,讓自己變得更樂觀,也能夠讓你更容易遇見幸福的愛情(延伸閱讀:半杯水的故事:樂觀,真的比較好?)。當你在愛情裡面碰到挫折時,老是覺得自己沒辦法化解衝突,老是覺得對方脾氣每次都那麼差,那麼你就很容易陷入負面情緒當中,對於問題的解決一點幫助都沒有。但是,如果你能想著,「對方今天心情不好,所以才這麼兇」,那麼你就比較不會陷在裡面,比較能去化解衝突了。就如同John Gottman在他的著作《愛的博弈》裡面所提及的一般,事實上,許多關係良好的伴侶,面對衝突時,用的根本不是諮商師教的那一套對話方式,而是靠著幽默來化解的。能夠變得樂觀正向,讓正面情緒陪著你,才更容易去面對這些衝突與失落(延伸閱讀:跨出你的舒適圈──正向心理學給我們的一些啟示)。

-----廣告,請繼續往下閱讀-----

其實,我們之所以會有這麼多的壓力與挫折,很多都和童年經驗有關。有一些童年的負面經驗,其實是代代相傳的,父母小時候也被這樣教養長大,父母在愛情裡面的不安全感也很重,於是在長大之後,儘管自己希望能對小孩子好一點,卻又常常陷入了同樣的情境當中,而小孩子又再次受傷,那一些負面經驗,就這樣一代一代的傳下去…….。正因為改變不是一件容易的事情,需要回到我們自己身上,去看待我們的情緒、想法,是怎麼樣影響著我們,所以我並不期望,在我短短的文章裡面,能夠帶給你多大的收穫。

我唯一希望能做到的是,鼓勵著正在閱讀文章的你,能夠在這裡找到一些,向外求助、向內探索,讓自己變得更好的動力。如果我們都曾受過傷,那就讓傷害停止在我們身上吧。一時逃避問題沒有什麼不好,但是如果每次碰到問題都在逃避,那麼久了之後還是會崩潰的,我們內心能隱藏的事情有限,並不可能無止盡的埋藏下去。期望能夠透過這樣一點短短的文字,讓你在新的一年,能夠重新尋回失落的勇氣。

IMG_1526

 

也許,我們都還在等一個人出現,擁抱著我們的世界,即使我們都受過那麼多的傷害,害怕著未知的未來;但是,阻撓我們幸福的枷鎖,卻只有我們自己能夠解開。

天燈滿載著我們內心的那一些夢,消失在微雨的夜空中。希望在新的一年你,你我都能變得更加勇敢。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

  1. Bookwala & Fekete, 2009; Munsey, 2010; Myers & Diener, 1995
  2. 基督教協基會社會服務部(2011)
  3. 推薦閱讀 伊東明的《愛,上了癮》,心靈工坊出版
  4. Kelly, E.L., & Conley, J.J. (1987). Personality and compatibility: A prospective analysis of marital stability and marital satisfaction. Journal of Personality and Social Psychology, 52, 27-40

 

-----廣告,請繼續往下閱讀-----
文章難易度
貓心
76 篇文章 ・ 123 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

0

3
1

文字

分享

0
3
1
微笑會讓自己變快樂嗎?「假裝」的心理學——《怪咖心理學之鍛鍊正能量思維》
azothbooks_96
・2023/06/02 ・2093字 ・閱讀時間約 4 分鐘

讓大腦「裝假成真」的實驗

幾年前,科學家決定對詹姆斯的假說展開終極的測試,他們對受測者進行腦部掃描,請受測者做出害怕的表情。研究者從機器窺探受測者的大腦,他們看到杏仁核非常活躍,因此推論受測者的確有恐懼的感覺。所以,研究人員得到了終極的證據,證明假裝感受可以直接影響大腦。

一九六○年代末期,年輕的詹姆斯.萊爾德(James Laird) 在羅切斯特大學攻讀臨床心理學博士。在某次實習課程中,指導教授要求他訪問患者,同時教授透過單面鏡在一旁觀察。訪談過程中,患者的臉上突然出現一抹不尋常的微笑,那微笑引起萊爾德的好奇,他想知道患者露出那不尋常的表情時是什麼感受。

患者不尋常的微笑勾起萊爾德的好奇心。圖/giphy

他開車回家的途中,腦中一再浮現那次訪問的情況,對那抹微笑益發好奇。最後他逼自己做出同樣的表情,以了解那是什麼感受。他驚訝地發現那微笑讓他瞬間快樂了起來。好奇之下,他接著嘗試皺眉,心情馬上難過了起來。那次開車回家的奇怪體驗,從此改變了萊爾德的職業生涯。

當晚他回到家後,馬上走到書架前,查詢情感心理學的相關資訊。巧的是,他拿起的第一本書就是詹姆斯的《心理學原理》。

-----廣告,請繼續往下閱讀-----

微笑就會變得快樂

萊爾德閱讀詹姆斯失傳已久的理論,覺得那也許可以解釋為什麼他在車內微笑後馬上變得更快樂了。他也意外發現那理論已歸入史書,從來沒做過應有的測試。為了測試,萊爾德邀一些志願受測者到他的實驗室,讓他們微笑或皺眉,然後告知感受。根據詹姆斯的理論,微笑的人應該會比皺眉的人快樂許多。

不過,萊爾德擔心受測者可能會迎合他,說出他想聽的結果,所以他必須想辦法在隱瞞實驗的真實目的下,讓他們微笑或皺眉。

後來,他巧立了一個名目。他告訴受測者,他們參與的實驗是研究臉部肌肉的電流活動,並在受測者的眉宇間、嘴角和下巴邊緣裝上電極。接著,他向受測者解釋,情緒的變化會影響實驗結果,為了避免情緒造成誤差,要求他們在實驗的過程中要告知情緒變化。

萊爾德決定進行表情與情緒關聯的實驗。圖/envatoelements

電極器當然是假的,但是那個巧立的名目讓萊爾德可以偷偷地把受測者的表情轉為笑臉或苦臉。為了塑造憤怒的表情,他叫受測者把眉宇間的電極器往下拉,用咬牙切齒的方式收縮下巴上的電極器。為了塑造快樂的表情,他叫受測者把嘴角的電極器往上揚。

-----廣告,請繼續往下閱讀-----

受測者依照要求改變表情後,接著他給受測者一張表格, 上面列了一些情感的項目(例如,激動、不安、快樂、懊悔等等),請受測者評估各種情感的感受度。結果相當驚人,跟詹姆斯在十九世紀末的預測一樣。受測者在做出微笑的表情後,覺得更快樂;在皺眉後,覺得更生氣了。

研究過後,萊爾德訪問受測者,問他們是否知道自己為什麼在實驗中會有那些不同的感受。只有少數幾人把新感受歸因於臉部表情的操控,其他人都無法解釋感受的轉變。其中一位把表情轉為皺眉的受測者表示:「我其實毫無怒氣,卻不自覺地想到令我發怒的事情。這實在有點荒謬,我知道我正在接受測試,沒理由生氣,但我就是控制不了。」

受試者因為皺眉的表情感到憤怒的情緒。圖/envatoelements

立刻就快樂起來的方法

十九世紀初,俄國戲劇導演康斯坦丁.史坦尼斯拉夫斯基(Constantin Stanislavski)發明了方法演技(method acting), 顛覆了戲劇界。這種表演方法的關鍵在於鼓勵演員以控制行為的方式,在舞台上體驗真實情感。

這種方法常稱為「魔力假使」(the magic if)(「假使我真的有這種感受,我會怎麼表現?」),一些知名演員也採用這種方式。例如,馬龍白蘭度、華倫比提、勞勃狄尼洛。

-----廣告,請繼續往下閱讀-----

同樣的方法也用於探討「裝假成真」原理的實驗室研究中。假設你現在參與驗證「裝假成真」原理的研究,首先,用 1 到 10 來評估你目前快樂的程度,1 代表你剛跌進水溝裡的心情,10 則代表你看到最痛恨的敵人跌進水溝裡的心情。

接著,請開始微笑。不過,我要的不是短暫擠出沒什麼感覺的微笑,請依照以下的指示微笑: 

  1. 坐在鏡子前。
  2. 放鬆額頭和臉頰的肌肉,嘴唇微開。在科學界,你現在的表情稱為「中立」,像一張空白的畫布。
  3. 將嘴角肌肉往後拉向耳朵,盡量把笑容拉大,笑到眼晴周圍產生紋路。最後,把眉部肌肉輕輕揚起,維持這個表情約二十秒。
  4. 收起表情,想想你現在的感受。

——本文摘自《怪咖心理學之鍛鍊正能量思維,用科學方法讓好事成真》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。