1

0
1

文字

分享

1
0
1

誰能複製完美琴音?

科學月刊_96
・2011/09/16 ・3654字 ・閱讀時間約 7 分鐘 ・SR值 525 ・七年級

文 / 葉偉文

為什麼史特拉底瓦里的小提琴動輒上百萬美元?因為它發出的琴音舉世無敵。

為什麼它的琴音這麼完美?這就是個長達200年的解謎過程了。

古人說「工欲善其事,必先利其器」,許多技藝的表現,都深受所用工具的影響。以小提琴家的演奏為例,表演的效果絕對和表演者所用的小提琴有關。但什麼才是最好的小提琴?一提到這個問題,不同的製造人依據不同的理論,往往吵得殺聲震天。我們的社會經常出現頗具爭議性的問題,如殺蟲劑、化學肥料、基因改造食物或人工甘味素,贊成與反對雙方經常提高分貝吵得面紅耳赤。但和小提琴的優劣爭執相比,前面那些爭論只像是小孩子在遊戲間鬥嘴而已,小提琴的優劣可是引發物理、化學與傳統這三個領域,長久之間互相的情緒性爭執。

在這些不同的陣營裡,至少存在有一個共識——製琴師要奪取聖杯,就必須製出能與十八世紀義大利克里蒙納(Cremona)地區的巧匠所製出來的名琴相匹的小提琴。其中最為著名的如史特拉底瓦里(Antonio Stradivari)和瓜奈里(Giuseppe Guarneri del Gesù)等大師製作的小提琴,這些名琴目前只有上百具存世,多數身價都高達數百萬美元。據小提琴家描述,演奏史特拉底瓦里琴是一種神聖的經驗,遠非演奏現代的小提琴所能比擬。

安東尼奧‧史特拉底瓦里史特拉底瓦里的小提琴,音色絕妙,至今無人能及。傳說他在製作小提琴的時候,有天使降臨助他一臂之力;有人說,他製琴的材料,取自教堂的橫樑,也有人說他的木材浸過特殊的溶液,但這些都是沒憑據的說法。史特拉底瓦里小提琴的奧祕大家都苦思不解,幾百年來,很多人都想破解其奧祕,誰將可能成功呢?

塗漆是關鍵的「化學派」

在許多學說見解中,大約可以歸納出兩方面的原因。第一派的見解認為答案在油漆上。1902 年,英國希爾(Hill)兄弟出版了一本書——《史特拉底瓦里的一生與工作》(Antonio Stradivari: His Life and Work)。書中指出,名琴的祕密是在琴身塗漆的特殊配方,因為史特拉底瓦里琴身結構與木材來源,經過分析測量之後,並沒有什麼特殊之處,後人都可以仿造。剩下的部分只有漆料,可惜史特拉底瓦里漆料的配方並未留下資料,留給後人許多探討的空間。

但後來的研究顯示,塗漆對小提琴的振動並沒有什麼助益。1968年,物理學家史歇林(John C. Schelleng)指出,上漆對小提琴面板的振動,反而有不利的影響。他認為上漆只有保護及美觀的效果,關鍵是越少越好。

然而有些史特拉底瓦里琴,表漆雖已大量脫落但音色依然脫俗,因此便有人認為表漆好像沒什麼影響,表漆下的底漆可能才是關鍵。底漆會滲入木材,有可能影響到木材的成分。史特拉底瓦里琴的權威專家薩科尼(Simone Fernando Sacconi)在《史特拉底瓦里的祕密》(The “Secrets” of Stradivari)書中表示,分析史特拉底瓦里琴面板材質之後,化學家發現面板塗有一層含矽及鈣的底漆,這些元素會滲透進琴板裡,填塞了木材組織間的空隙,具有硬化作用。木材的硬化可促進琴板的振盪,增加振盪靈敏度和音響的反應,使得史特拉底瓦里的琴板又薄又堅固,並兼具防水功能,即使外層的面漆脫落,亦無損於琴音的音質。

薩科尼進一步的探討,古義大利有在漆裡添加葡萄藤灰的作法。而灰裡含有矽及鈣,可能就是漆內含此元素的原因。薩科尼是提琴維修專家,幾乎見過所有存世的史特拉底瓦里琴,還修護過其中大部分的琴,因此他的研究應該是具有相當的可靠性。

美國德州農工大學退休教授納吉瓦里(Joseph Nagyvary)也認為史特拉底瓦里名琴的奧祕應該是在於使用的木材與塗料的化學特性,而非另一批專家所認為的音箱物理特性。當然他也承認小提琴的音箱構造有其重要性,但絕非美妙琴音的關鍵因素,因為就算可以準確地依照原古老名琴的尺寸與重量,複製出幾乎完全一樣的新琴來,但卻無法複製原琴的美妙琴音。

位於義大利北方的克里蒙納,在十七至十八世紀是製造小提琴的重鎮。

納吉瓦里從史特拉底瓦里名琴上,取了一些碎片去做電子顯微鏡攝影和X 射線光譜分析,發現在木材裡有些真菌類的痕跡,而且似乎這些材料曾經浸泡在海水裡一段很長的時間。推測可能在史特拉底瓦里時代,原木都是利用河道順流而下抵達亞德里亞海,木材在泡水的過程當中,吸收了水裡的微量礦物質,改變了特性。納吉瓦里也在木材裡發現了硼和鋁,因此他假設可能是當年使用硼砂與明礬來為木材作防腐處理的結果。此外,他還發現史特拉底瓦里使用了某種植物成分來作表面塗料,可能是瓜爾膠再摻了玻璃與其他礦物質的粉末。因此,根據納吉瓦里的說法,史特拉底瓦里名琴的美妙聲音,關鍵在於為木材作防腐處理與上漆的無名化學家。

納吉瓦里教授花了30 年,實驗了各種不同的配方,終於得到滿意的成果,聲稱可以將美妙的琴音再現。他製作了一些高價的小提琴,價位在1 萬5000 美元左右。但是納吉瓦里受到很多小提琴製造商及代理商的攻擊,這些人一方面認為受到威脅,另一方面是生氣居然有人認為偉大的琴藝家史特拉底瓦里不了解自己做的琴為什麼會那麼好。

結構最重要的「物理派」

另一派則從小提琴的發聲原理入手。小提琴的聲音是這樣產生的:琴弓摩擦琴弦,使琴弦產生振動,這股振動會透過琴橋與音柱,使小提琴的腹板與背板一起震動而發出聲音。

哈金斯(Carleen Maley Hutchins)本來是一位中學的科學教師,退休後她決定獻身於製造小提琴這門古老的工藝技術。其實她最想要的還是發掘這門工藝背後隱藏的科學原理,她和哈佛大學的物理學家桑德斯(Frederick Saunders)合作了近20年,研究小提琴音箱產生的振動。

哈金斯把聖誕節裝飾用的亮粉,灑在預備做小提琴音箱的表板和背板上,然後用電子發生器來使木板產生振動,研究亮粉的振動模式。她的結論是,悅耳琴音的關鍵在於音箱木板的質量與厚度,以及音箱內部「低音樑」與「音柱」的位置。不僅如此,根據哈金斯的研究,小提琴拉的次數越多,發出來的聲音越好聽。她認為經過數十年的振動後,音箱木頭的結構會改變,改善共振品質,因此她嘗試把做好的小提琴先放在音樂室裡,暴露在古典音樂的樂音裡約1500 小時後才銷售。她認為這些小提琴使用百年左右,音色應該會接近史特拉底瓦里名琴。哈金斯做的小提琴價位與納吉瓦里琴在伯仲之間,但她也常受傳統派人士的冷嘲熱諷,認為科學家不應把手伸進傳統的藝術領域裡。

說到木材的材質,還有一段插曲。美國哥倫比亞大學的古生物學家柏克爾(Lioyd Burckle),和田納西大學的樹木年輪學家桂西諾梅耶(Henri Grissino Mayer),2003年在《樹齡學期刊》(Dendrochronologia)上發表論文。他們發現史特拉底瓦里生於歐洲「小冰河期」的前一年,因此認為小冰河期與史特拉底瓦里的琴音可能大有關係。

歐洲這段小冰河期是從1645 年到1715年,在這70 年間,太陽上幾乎沒有出現黑子。由於太陽的活動力減弱,使得歐陸出現明顯的低溫,微弱的日照減緩了暖空氣從大西洋上空飄移至西歐的速度,導致往後數十年的潮溼氣候,也使阿爾卑斯山上的樹木生長緩慢;再加上當地土壤的特質、溼度與坡地等環境,致使樹木長出更強韌、更堅固的材質。高密度木材的細胞壁較厚,共鳴能力比細胞壁薄的木材好很多,音質也較佳。而這段小冰河期,正是義大利克里蒙納地區製琴技術的黃金時期,此時的大師如史特拉底瓦里、瓜奈里、瓜達尼尼等人,從阿爾卑斯山區精選雲杉來製作小提琴的面板,所製作的小提琴音色優美,迄今無人能及,可能就是小冰河期的功勞。

另類塑膠小提琴

最後還有一項令傳統小提琴眾聽了幾乎要發狂,離經叛道的小提琴製作法。馬加法利(Mario Maccaferri)本來是個傳統的樂器製造商,製造吉他和小提琴。1939 年馬加法利到紐約去看世界博覽會,被會中出現的新穎塑膠材質迷住了,因此在第二次世界大戰之後,便設法弄來一套聚苯乙烯的射出成型設備。他先靠製作塑膠衣夾賺了些錢,接著製作夏威夷的四弦琴「尤克蕾里」,正式進入塑膠樂器行業。這種塑膠製的四弦琴後來經由藝人戈弗雷(Arthur Godfrey)在電視節目裡介紹,開始聲名大噪,賣出好幾百萬把。

接下來,馬加法利就開始製作塑膠吉他和塑膠小提琴。由於這種合成材料的小提琴,音質比不上傳統小提琴,因此一流的演奏家很少使用。但這種全新材料已經進入小提琴的製造領域了,目前最新使用的為碳纖維材質。有些專家預言,由於合成材料能精密鑄造,最後一定能做出非常傑出的樂器。

截至目前為止,在這場小提琴的製造競賽中,似乎是由化學派的納吉瓦里暫時取得領先。德州農工大學辦過一場琴藝評選,邀請一位世界級的小提琴演奏家,分別用納吉瓦里琴和史特拉底瓦里琴演奏,並把聽眾及演奏家用簾子隔開,而受邀的專家和聽眾,都覺得納吉瓦里琴的樂音略勝一籌。所以看起來化學分析琴漆可能的確是名琴優美音色的關鍵,但兩、三百年後,是否會有更多其他的學說,就不得而知了。

葉偉文:任職台灣電力公司

[科學月刊 第四十一卷第八期]

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
所有討論 1
科學月刊_96
248 篇文章 ・ 3153 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
漱口,預測心血管疾病?
胡中行_96
・2023/10/02 ・1881字 ・閱讀時間約 3 分鐘

「您去找家庭醫學科或牙科做年度健檢時,可以進行漱口檢測。」2023 年 8 月《口腔健康前沿》(Frontiers in Oral Health)期刊加拿大論文的共同作者,誠心推薦:「這個簡單的口腔發炎評估工具,能於任何診所實施。」「優良的口腔衛生,跟定期看牙一樣,總是備受推崇,特別是看在此證據的份上。」通訊作者也在一旁幫腔。[1]所以,他們到底是研究什麼口腔疾患? 誤會大了,重點是心臟病啊!

圖/engin akyurt on Unsplash

研究設計

研究團隊招募了 18 至 30 歲之間,不抽菸、BMI 小於 30 kg/m2,沒有高血壓與心血管疾病,且常規藥物不會影響相關功能的 16 名男性跟 12 名女性,總共 28 名受試者。其中女性採樣時間必須在月經頭 2 天;口服避孕藥使用者為服用安慰劑期間;[註]其餘避孕方式則一律排除。研究團隊希望藉由篩選的條件,盡力避開老化、個人宿疾、特定生理差異等,各種會干擾結果的因素。[2]

人都找好之後,試驗步驟大致如下:8 小時內避免運動和攝取任何咖啡因或酒精,並且除了飲水外,禁食 6 小時。正式採樣當天,先測量身高、體重,用自來水潄口 10 秒,吐掉;稍候2分鐘,又以 10 毫升的生理食鹽水漱個 30 秒,再吐進 20 毫升的唾液收集管,送驗口腔嗜中性白血球計數(oral neutrophil counts)。接著平躺至少 10 分鐘,以心電圖測量心律;然後維持同樣的姿勢,測量血壓脈波速率(pulse wave velocity)和肱動脈血流介導舒張(brachial artery flow-mediated dilation)。[2]

口腔嗜中性白血球計數牙齦發炎程度的指標。檢體與 4% 的甲醛混合,冷藏於 4°C 的冰箱內直到檢驗,不得超過2天。經過離心機高速轉動處理後,除去上層澄清的液體,將沉澱的細胞與 500 µl 的 Hank’s 平衡鹽溶液混合。以 4 µg 的吖啶橙(Acridine orange)染劑,為其中 250 µl 的細胞上色,並靜置於室溫的暗房裡 15 分鐘。取出稀釋 10 倍,於顯微鏡下放大 200 和 400 倍,以血球計數盤(haemocytometer)輔助,肉眼計算嗜中性白血球的數量。[2]

血球計數盤示意圖。圖/Zhang S, Kuhn JR. (2012) ‘Cell isolation and culture’. In: WormBook: The Online Review of C. elegans Biology. Pasadena (CA): WormBook.(CC BY)

另外,脈波速率是感測脖子與大腿內側的脈搏,以二者的距離和脈波傳導的時間差計算速率,進而瞭解動脈的硬度:[2, 3]脈波速率愈快,代表血管壁愈硬。肱動脈血流介導舒張則是暫時阻塞血流再放行,透過超音波取得影像,以上臂肱動脈直徑變化的百分比,來反映其內皮功能的情形。[2]

漱口檢測的原理

受試者雖然沒有已知的口腔問題,但是某些其實有程度不等的牙齦發炎。研究團隊從上述諸多檢測的結果,歸納出一個明顯的現象:當口腔發炎愈嚴重,嗜中性白血球計數愈高;肱動脈舒張的變化就越小,即血管內皮功能越差。其他項目則沒有特別的關聯。[2]

口腔嗜中性白血球計數愈高,肱動脈舒張的變化就愈小。圖/參考資料 2,Figure 5(CC BY 4.0)

他們解釋,這是因為細菌組成的生物膜,也就是牙菌斑(dental plaque),所分泌的代謝物,滲透過牙齦溝(sulcus)上的連接上皮(junctional epithelium),擴散進入血流。於是,口腔發炎就變成系統性的發炎。此時,系統內的發炎性細胞素(inflammatory cytokines)濃度上升,因而減少血管內皮的一氧化氮(nitric oxide)產量,間接削弱血管舒張的能力,久而久之就容易得到動脈粥狀硬化(atherosclerosis)。[2]

牙齦連接上皮(JE)的位置。圖/Könönen E, Gursoy M, Gursoy UK. (2019) ‘Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues’. Journal of Clinical Medicine, 8(8):1135.(CC BY 4.0)

比起繁複或侵入性的心血管檢測,漱口絕對方便舒適許多。不過,現在這個前驅研究的規模甚小,因此論文的通訊作者表示,期望未來能納入牙周病患者,進一步探索不同程度的牙齦發炎,與心血管疾病的關係。[1]

  

備註

口服避孕藥每份有 28 顆,其中 21 或 24 顆含荷爾蒙,其餘的則為安慰劑。[4]

參考資料

  1. Gillham AB. (18 AUG 2023) ‘A simple mouth rinse could spot early heart disease risk’. Frontiers Science News.
  2. Hong K, Ghafari A, Mei Y, et al. (2023) ‘Oral inflammatory load predicts vascular function in a young adult population: a pilot study’. Frontiers in Oral Health, 4:1233881.
  3. Measurement of pulse wave velocity’. (03 JUL 2013) NHS Health Research Authority, U.K.
  4. The pill (combined oral contraceptive pill)’. (JUN 2023) Healthdirect Australia.
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
1

文字

分享

0
4
1
舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎
PanSci_96
・2023/09/30 ・3674字 ・閱讀時間約 7 分鐘

J……J 個是!這顆石頭一接觸到我的舌頭,它就像火一樣燃燒,同時留下苦澀和尿味的味道,在這之後還留下了一點甜味。

圖/Youtube

這,這一顆石頭不一樣,它有酸辣味和硫酸鹽味,卻同時給我一種難以形容的愉悅感!就像在品嘗紅酒的酸味一樣!

圖/Youtube

等等,我並沒有壞掉,我現在做的事是某些地質學家和古生物學家真的會做的事,而且這件事還得了諾貝爾獎!只是是搞笑諾貝爾獎。

搞笑歸搞笑,舔石頭卻真的是再實用不過的方法。因為,舌頭真的是太好用了!

地質地科系祖傳秘招——舔石大法!

2023 年的搞笑諾貝爾獎的化學與地質獎頒給了地質學家揚.扎拉謝維奇,得獎的原因不是因為特定研究,而是它整理了地質學家和古生物學家「品嘗」岩石和化石的「研究史」。

有在跟我們直播的泛糰肯定知道,在今年搞笑諾貝爾獎頒發的隔週,上個月的 9 月 18 日,我們在 YouTube 官方舉辦的 2023 YouTube Festival 活動中,辦了一個實體見面會。在見面會中我們介紹了今年其中三個搞笑諾貝爾獎,其中就包含這則「地質學家為什麼要舔石頭」。另外兩個獎項分別是操縱死靈蜘蛛,和研究為什麼上課為什麼會令人感到無聊。這場見面會也有同時開直播,連結放在右上角的資訊卡,裡面提到不少有趣的觀點,歡迎去直播存檔複習。

當天,除了就像開場演繹的,不同岩石真的嚐起來味道不一樣以外,有一個地科系的觀眾,現場分享了另一個有趣的觀點。但先說聲抱歉,那時候觀眾手持的麥克風訊號沒有進到我們的混音器,所以在線上收聽的朋友沒有聽到前半段。

我們這邊重新轉述一下,這位觀眾說早在這個獎項頒發前,就知道用舔石頭來辨識種類的這種方法了,因為他的老師就是這麼教他的!沒想到,這竟然是地科與地質系祖傳的秘技嗎!

舌頭比手指還好用?

但除了味道外,觀眾還分享了一個這次搞諾沒有提到的原因,就是舌頭的觸覺可能比手還靈敏。某些岩石例如砂岩跟頁岩,可能用手摸不出差別;用舌頭舔,竟然就能分別出差別。

什麼,舌頭真的這麼厲害嗎?想想好像也是,我們吃東西的時候會用舌頭去感受食物的形狀,這些觸感甚至也是我們品嘗食物時,了解食物的重要一環。除此之外,我們還可以找出食物中的魚刺,或是卡在牙縫中的菜渣,有些人還能幫櫻桃梗打結呢。

圖/Giphy

但好像從來沒有人拿舌頭和手去做比較,因為只要講到觸覺,我們第一時間就會認為手指更加靈敏。

其實,還真的找到有人研究過,一群俄亥俄州立大學食品科技系的實驗團隊,就研究了這個問題。他們準備了幾個形狀極為相似的樣品,樣品的長度、厚度、缺口的大小都一樣,只有缺口處的傾角不同。

傾角從 45 度到 90 度都有,每塊的角度以 5 度為間隔。受試者必須拿起兩塊樣品,並在蒙眼的情況下,分別用摸或舔的方式來分辨出兩者分別為哪一塊。其中一塊始終是 90 度,另一塊則是從 65 度開始角度遞增。

這次的實驗有 30 位受試者,結果表明,使用手指來分辨兩塊樣品,平均要兩塊的角度差超過 19.81 度時,才能分辨出差異。如果用舌頭舔呢?只要兩者的角度差超過 12.75 度,就能分辨出差異!比用手摸的角度差小了許多,也就是舌頭真的比較靈敏。

實驗結果數據,JND(Just Noticeable Difference)表受試者在樣品相差幾度時能感受到差異。圖/Comparison of The Tactile Sensitivity of Tongue and Fingertip Using a Pure-Tactile Task

當然,這個實驗還有兩個方向值得討論,一是這只針對物體邊緣形狀的靈敏作分析,但觸覺有許多不同感受,例如紋理、粗糙程度等,所以可能每種觸覺做出來的實驗結果會不同。這個實驗看起來不難做,各位可以準備一些能放入嘴的材料,例如請朋友直接將比較硬的芭樂切成不同形狀來舔舔看差別,就能簡單復刻這個實驗甚至更改參數,有實際測試的觀眾也不要忘記留言告訴我們。我們這邊也同步徵求花京院來協助我們實驗。

而另一點是,關於舌頭為什麼有跟手指同等,甚至更強觸覺的生理機制,本篇研究僅止於現象探討,還未有深入研究。

圖/Giphy

濕濕的石頭更好觀察?

除了味覺和觸覺外,舔石頭還有另一個重要的原因,就是濕潤的石頭紋理更清楚,更方便研究。

這應該大家都有經驗,在學校的大理石地板拖地,或是海邊的鵝卵石,沾到水之後,石頭的紋理都更加清楚,看起來也更漂亮。但這又是為什麼呢?

影響的原因有很多,但影響最大的,就是濕潤的表面讓石頭更「平」,產生類似拋光的效果。但為什麼磨平拋光,顏色就更好看呢?

我們知道光線照到鏡子會產生反射,但鏡子很平整,如果現在照射到的是一個凹凸不平的表面,光線就會往四處反射,這種現象稱為漫反射。當我們只想看石頭上的其中一點時,旁邊的光卻會雜亂的跑進我們的眼睛,影響到對比度。並且各種顏色的色光聚在一起會形成白光,因此這些漫反射而來的光線,就會以白光的形式被我們看到。白話文就是,物體的對比下降了,但是整體的亮度提高,變成我們常看到灰白色的石頭表面。

直到石頭被拋光,或是因為濕潤產生拋光的效果,這些漫反射就會減少,石頭整體變得比較暗沉,但是斑紋之間的對比度提高了。這就是為什麼粗糙的石頭顯得灰白,浸濕之後卻呈現深沉而圖樣明顯的原因。

還沒完,薄薄一層水還會造成更多影響。例如,這層折射率介於空氣與石頭之間的介質,可以幫助光線稍微穿透岩石的表層後再反射出來,提供視覺上更多的紋理細節。如果將水換成木工中常使用的亮光漆,除了反射與折射外,亮光漆中的分子,還足以讓光線產生散射,讓你在上不同厚度的亮光漆時,能產生不同的顏色變化。

簡單來說,不論是水還是漆,這薄薄的一層介質,能像相機的鏡片一樣,透過光學調校,將更清楚、細節更多的影像送進相機的感光元件,也就是我們的眼睛上。而替換不同的鏡片,就能改變我們看到的樣子。

有介質存在於空氣與觀測物間時,光會產生折射,造成不同視覺效果。圖/askamathematician.com

這個看似玩笑的舔石頭研究,確實好像又有幾分認真的道理,我們自己在研究的時候,最開始也覺得超ㄎㄧㄤ,後來又發現能學到不少冷知識。

最後也想調查一下,除了舔石頭以外,大家還對哪一則搞笑諾貝爾獎有興趣,希望我們也來講講呢?

  1. 帶電的筷子,能讓食物更好吃?
  2. 哪些人有倒著說話的特殊能力?
  3. 要多少人抬頭看天空,才會吸引路人跟著抬頭?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1208 篇文章 ・ 1893 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
室溫超導體:開啟未來世界的鑰匙?
Castaly Fan (范欽淨)_96
・2023/09/26 ・3942字 ・閱讀時間約 8 分鐘

2023 年 7 月 23 日,來自南韓的研究團隊發表了《The First Room-Temperature Ambient-Pressure Superconductor》,宣示著世界上第一個室溫常壓超導體被成功發明。文章剛刊登到 arXiv 上,便掀起了全球各地的研究熱潮,不少媒體競相報導,科技市場、各種概念股也沸騰著。那麼,「室溫超導體」究竟是何方神聖?

超導體——能源損耗的救星?

相信大家對於這個詞並不陌生、卻又不甚熟悉。在中學時代理化課,我們接觸過「導體」這個詞;在關注科技業或者財經新聞時,可能接觸過「半導體」這個詞。而「超導體」(superconductor)究竟是什麼?

首先,「超導」是一種物理性質,在距今大概一百多年前便被發現。最早可以追溯到 1911 年,科學家發現:將汞(水銀)透過液態氦冷卻至 4.2 K(相當於 -268.95 °C)時,電阻將完全消失,這便是「超導現象」的開端。因此,「低溫」似乎是開啟新世界的一把鑰匙。而電阻消失有什麼幫助?

事實上,我們生活周遭的一切都是在無窮的損耗中進行的,以電子產品和通訊設備為例,這些電路元件與器材的運作源於電流,亦即導線內部電子的游動,但這個傳輸過程是耗能的,因為電子會不斷與導線內壁的原子碰觸、摩擦,從而消耗到不少能量,同時也意味著導線壽命會隨時間衰減。電路損耗的能量與電阻成正比(P = I²R),如果電阻消失了,那意味著損耗的電熱能也將消失,這將大幅提升電子在線路中的傳輸效率,從電力傳輸、通訊、發電機,到交通工具、家用電器等層面,使用效能都將顯著提升。

到了 1933 年,物理學家發現:當物質低於臨界溫度變成超導體時,會具有「完全抗磁性」,也就是原本應該穿過物體本身的磁力線會巧妙地從旁「繞過」,這個現象被稱為「麥斯納效應」(Meissner effect)。這個效應帶來了超導體的「懸浮」性質,也就是在不用任何外力的接觸下,在足夠的低溫環境中、超導體便可以藉由抗磁性讓物體「懸浮」而起。我們知道,凡是有接觸便有摩擦力的產生,而摩擦力會損耗不少熱能,因此,如果可以不透過外力接觸而操控物體、就意味著沒有了摩擦力、也就可以不再擔心能量的損耗。

A diagram of a sphere and a line

Description automatically generated
麥斯納效應示意圖:當超導材料低於臨界溫度時(右),便可產生完全抗磁性。圖/Wikimedia

簡而言之,我們可以歸納「超導體」具有下列兩大特性:

  • 超導電性:在臨界溫度以下,電阻消失,意味著能量損耗可被降至最小值。
  • 完全抗磁性(麥斯納效應):在臨界溫度以下,磁力線被排斥於物體之外,意味著超導體可具有懸浮特性。

科幻電影中,那些飛快如光的磁浮列車、懸空而起的滑板、或者看似反重力的幽浮,這些都可以透過超導實現,因此,未來世界很可能充滿著各個類型的超導設備。即使在今日,相關的應用也已出現,比如日本便在數十年前研發出「超導磁浮列車」(SCMaglev),2015 年測試的最高時速即達到每小時 603 公里,刷新了地表上速度最快的列車紀錄。

室溫超導體——物理學的聖杯

然而,你或許也發現了,「超導體」並非唾手可得,至少需要「低溫」這個條件,又或者「高壓」 。

而低溫不僅僅是冰點這樣的溫度,而是接近「絕對零度」(0 K,即 -273.15 °C) 的「極低溫」,因此,開發出「高溫超導體」成為了物理學家的重要目標,而這裡的「高溫」並不是讓水煮沸、會讓你燙傷的溫度,而是指高於絕對溫標 77 K(-196.2 °C,即液態氮的沸點)的溫度。這個對人類來說已是難以想像的低溫、對超導體而言卻是相對的高溫。截至 2023 年,人類所開發出最高溫的超導體是一種名為 lanthanum decahydride(十氫化鑭,LaH₁₀)的化合物,其臨界溫度是 250 K(-23 °C),在 200 GPa(相當於接近兩百萬大氣壓)的環境下才得以實現超導特性。

A diagram of a molecule

Description automatically generated
目前已知被證實的高溫超導體——「十氫化鑭」的化學結構。圖/acs.org

由此可知,要開發出「高溫超導體」實屬不易,發明出「室溫」、「常壓」的超導體基本上更是難上加難。且液態氦、液態氮這些低溫材料都是需要一定的成本,再加上要定溫保存更是不易,因此,倘若室溫超導體能被成功發明,這意味著不僅能大幅降低成本、還能大幅提升運作效能。

LK-99——睽違已久的聖杯、或是泡影?

回到文章一開始的新聞:2023 年 7 月下旬,韓國科學技術研究院 (KIST)以李石培、金智勳為主的研究團隊宣稱他們開發的材料「LK-99」在「室溫」、「常壓」環境下具有超導特性。這次的實驗紀錄號稱:他們的 LK-99 材料具有室溫超導特性,且上限可以到達 400 K(127 °C)這名副其實的「高溫」,並且是在正常大氣壓力下完成的——這遠遠勝過上一個高溫超導體 250 K、200 GPa 的紀錄;不僅如此,這個「LK-99」製作過程超乎想像地簡易,基本上待在實驗室不用三天就可以完成!擁有這麼良好特性、且製作過程又特別上手的超導材料如果被證實,勢必掀起第四次工業革命。

A diagram of a molecule

Description automatically generated
LK-99 的晶體結構側視圖。圖/https://arxiv.org/pdf/2307.16040.pdf

讓我們先來看看這個團隊在論文中的研究內容:首先,這個「LK-99」是近似於 Pb₉Cu(PO₄)₆O 的化合物,從化學式來看,可以發現鉛(Pb)、銅(Cu)、磷(P)這些都是不難到手的化學元素。而製作過程基本上就是研磨、混合、加熱、密封、抽真空等步驟,來回大概三天以內、就能生成 Pb₉Cu(PO₄)₆O,也就是 LK-99。根據他們的論文所述,這個晶體結構的形變會在材料內部產生應力,從而在特定截面產生「超導量子阱」(superconducting quantum well,SQW),致使材料產生了超導特性。這一系列過程都在常溫、常壓下進行的,且LK-99的超導特性可以維持到攝氏 127 度的高溫。

簡單來說,這個 LK-99 的超導性質與溫度、壓力無關,而是肇因於晶體本身,特定的結構形變導致了物質產生超導現象。在他們發布的影片中,可以看見灰黑色的 LK-99「部分懸浮」在磁鐵上,這是他們用來佐證「完全抗磁性」(麥斯納效應) 的證據,之所以沒有完美地懸浮是因為晶體的雜質所導致;此外,他們也宣稱測量結果顯示零電阻率,也就是電阻完全消失的「超導電性」。當「零電阻率」、「完全抗磁性」這兩個條件充分具備後,LK-99 便可以被視為一個成功的室溫超導體。

A black piece of coal on a round metal container

Description automatically generated
影片中所顯示的 LK-99 具有部分懸浮的特性。圖/Wikimedia

在論文推出後,世界各地的學術機構與實驗室開始著手復現 LK-99 的製備過程、並競相發表研究成果,短短不到兩週時間,關於 LK-99 的復現實驗以及理論相關的研究已經有二十多項。然而,截至目前(2023 年 8 月 10 日)為止,尚未有成功復現、且通過同行審核被登上期刊的成果(論文發表在學術預印本網站 arXiv,一般需要通過同行審核才有機會被刊登在期刊)。實驗的成果不盡相同,有些證明了 LK-99 的懸浮與抗磁性、有些證明了零電阻率,但也有一些只有觀測到電阻的跳變、有些甚至沒有觀測到任何結果。

一個值得注意的部分是:即使韓國研究團隊的論文中宣稱他們觀測到 LK-99 的抗磁性,也有不少團隊復現 LK-99 的懸浮特性,然而,這並不能斷定它來自於「麥斯納效應」。事實上,不少磁性物質都會有「抗磁性」,這來自於微觀的分子磁矩;但超導體所具備的是由宏觀「超導電流」產生的「完全抗磁性」(注意:本文目前為止強調的都是「完全」抗磁性),甚至能因麥斯納效應產生的磁通量而「固定懸浮」在同一位置(即使將底座磁鐵 180 度反轉,它也應當平穩地懸浮在相同的角度——這背後是複雜的量子機制,而非磁場或靜力平衡的結果)。另一方面,即使一些實驗發現了該物質有「零電阻」的結果,但這並不全然等同於「零電阻率」,因為如果測量的尺寸過小、也是會有量測不出電阻的可能性。因此,目前大部分的研究指向大概是:LK-99 或許具有抗磁性,但並未被證實存在有明確的超導行為。

歷史借鏡與未來展望

事實上,物理學家對於室溫超導的聖杯之旅一直以來從未間斷。舉例而言,2020 年,美國羅徹斯特大學以迪亞斯(Ranga P. Dias)為首的團隊便號稱開發出了一種名為 carbonaceous sulfur hydride 的超導材料,利用鑽石生成,並在 288 K (15 °C)、267 GPa 的環境下具有超導特性,甚至登上《自然》期刊,但該論文在兩年後因為統計分析結果的瑕疵而被撤銷;2023 年初,該團隊再次宣稱開發出了以 lutetium hydride(氫化鑥)為主的超導材料,這次的結果更令人驚豔——在 294 K (23 °C)、1 GPa(約莫一萬大氣壓)下便具有超導特性。可惜的是,該論文後來也因為涉嫌抄襲與偽造數據而被撤下。

科學最重要的一個評判標準就是它必須是「可證偽的」(falsifiable),對於從事實驗的科研人員而言,一個發明是否能被確立最關鍵的要素便在於實驗「可復現」(repeatable) 與否。如果一個實驗無法被成功復現,便很難說服學界接受研究成果。目前看來,南韓團隊所研發的 LK-99 可能無法算是成功的室溫超導體,不過我們也無需氣餒;儘管 LK-99 的超導行為目前尚未被成功復現與證實,但多少也給人們開闢一條研究蹊徑。

人類對於室溫超導體的探索從未間斷,物理學家們也嘗試以各種材料進行研發、希冀能儘早將璀璨的遠景付諸現實。雖然人們所憧憬的那種像科幻片中先進且便捷的「未來世界」可能不會在明天就來臨,但以當前科學日新月異的發展步調來說,也許已是指日可待。

A train on a track

Description automatically generated
超導的應用早已陸續浮現在生活中,日本的超高速列車 SCMaglev 便用到了低溫超導的磁浮特性。圖/scmaglev.jr
Castaly Fan (范欽淨)_96
6 篇文章 ・ 2 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。