0

0
0

文字

分享

0
0
0

生物律動-住在身體裡的音樂家特展

Jacky Hsieh
・2014/12/22 ・1478字 ・閱讀時間約 3 分鐘 ・SR值 452 ・五年級

我們很習慣「聽到」聲音,早上叮咚的公車到站鈴聲,辦公室主管漸漸接近的腳步聲,晚上經過家門那首少女的祈禱,我們透過聲音辨識位置、方向、是誰或什麼的聲音,進而這個聲音帶給你期待、緊張、或是興奮。

關於「聽到」這件事,太習以為常,即便我們都學過聲音是一種具能量的波動,但看不到的波,我們只能用感覺刺耳來知道它頻率太高,感覺大聲來知道它波動在很大的時候就傳入耳裡,國立臺灣科學教育館即日起到明年六月的「生物律動-住在身體裡的音樂家特展」就是要讓你不只聽到,還要看到、體驗到、感覺到。


首先,我們可以透過聲音判斷方位,不外乎因為我們有兩只耳朵,聲波傳入兩耳的差別讓你判定主管從哪來、垃圾車方向在家門前還是開到家門後了。展場裡掛了兩只耳機,播放著現場收兩顆不同方向的麥克風聲音,而這樣收錄的結果,播放給兩只分開的耳機,彷彿把左耳與右耳拆開,單獨聽到的感覺。而那兩只麥克風的收音結果,就像是電影院裡的全景聲或是環繞音響。

而當聲波傳入耳朵之後,耳朵裡的鼓膜連動三小聽骨,把這樣的訊號送入耳蝸,這些訊號推動耳蝸裡的纖毛,引起一連串電流訊號,當這些電流訊號送入大腦之後,我們才真的「聽到」聲音,展場裡的一個裝置互動藝術,你可以到耳朵造型麥克風前說話,說話時音響就會像鼓膜振動,而小鴨吉他水壺則是三小聽骨,耳蝸上面的纖毛有設置LED燈,當你喊的聲音越大,LED也會亮得範圍越廣。

-----廣告,請繼續往下閱讀-----


除了讓聲波視覺化之外,藝術家與科學家也讓聲波轉化為身體可以感受到的觸覺。

聲囊像是一個睡袋,裡面只有兩個音響聽得到聲音,剩下的傳動器則會轉化聲音,像是音響但少了薄膜一起振動,而把振動直接讓身體感受。聲囊裡頭的聲音,來自藝術家在走路與騎腳踏車於身體不同部位裝上麥克風所錄製的,在根據錄製的位置播放,耳邊聽到腳步聲,腳下則可以感受到傳動器的震動,真實的在囊中感覺到像是走路的感受。而音波椅與音波床也是有些類似的概念,聲音做的按摩椅與按摩床,讓我想到電影院裡的4DX,把耳朵、眼睛所看到與聽到的震撼效果,讓身體一起分享。



音樂也常常帶個人不一樣的情緒,就像傷心的人會想聽些慢歌,而快節奏的搖滾則讓人開心。場內有認知神經學家的實驗進行中,透過電腦研究,蒐集世界各地人與情緒以及心律和膚電反應的關係,你不僅現場實驗可以讓自己的實驗結果成為資料的一部分,同時他也會透過過去已蒐集到的資料,分析你的主觀情緒感受與生理資訊的結果,判斷你聽到實驗音樂的情緒反應;而聽到的不外乎是台灣流行歌曲,每次聽到的都不一樣,說不定你可以在現場驗證你認為讓你興奮的音樂,在生理結果上是不是也跟著興奮起來呢?!

現場還有許多讓身體、畫面、情緒,相互轉換,或是交互作用的裝置,讓「聽到」第一次突破聽覺大解放。2015/6/10前,別忘了找機會來科教館打開五官「聽」聲音!

-----廣告,請繼續往下閱讀-----







//原文發表於作者部落格

展出資訊

【時間】2014/12/11~2015/6/10
    週二至週五9:00-17:00
    (假日、寒假延長至18:00)
【地點】國立臺灣科學教育館七樓西側
【售票】國立臺灣科學教育館

文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
運動、認知與療癒:人與音樂的連結,從心跳開始
活躍星系核_96
・2020/02/29 ・2871字 ・閱讀時間約 5 分鐘 ・SR值 533 ・七年級

  • 文/林懷亞

音樂,是人類身體的本能。我們的談吐語調、呼吸、器官與細胞的週期以及心跳,都擁有自然和諧的韻律。這些原始的「生物律動」是人類創作、欣賞音樂的基底,當我們不僅僅以耳朵接收或創作音樂,而進一步以身體參與音樂的高低起伏、快慢跌宕,你也許會發現,音樂與我們的生命原來「聲聲相依」。

Image by OpenClipart-Vectors from Pixabay

音樂結合生物體感、觸覺及心理的相關研究近年備受關注,許多跨界音樂創作者更以人類與音樂互動的關係為創作元素。音樂不僅僅是藝術領域的一環,也提供了身心調適與治療之用。本文將從人類的心跳講起,認識音樂與人體的種種美好連結。

人類的「節拍偏好」

2002 年比利時根特大學的 Dirk Moelants 的研究發現,人類的「節拍偏好」(Preferred Tempo)速度為 120 至 130bpm(BPM全稱為「beats per minute」,即每分鐘節拍速度) 1,像是走路、鼓掌皆是這個速度。同時,Moelants 統計了「1960 至 1990 年中最流行的七萬四千首歌曲」,其中最多的速度也落在 120 bpm,兩者不謀而合。

-----廣告,請繼續往下閱讀-----

在 Moelants 之後,2016 年音樂串流公司 Spotify 統計了美國該年五至九月一萬首熱門歌曲,發現多數歌曲速度落在 70 至 180bpm,與一般人的安靜心率 60 至 100bpm 範圍十分接近,更值得注意的是,這一萬首歌的拍速也以 120 至 130bpm 為大宗。2

跟著音樂動次動!音樂真的能幫助我們增加運動效率嗎?

音樂與運動的研究最早可以追溯到 1911 年,當時的科學家就已發現自行車騎士在聽音樂的情境下,踩踏板的速度比平時快。3  2012 年,英國雪菲爾哈倫大學實驗顯示,若自行車騎士與背景音樂的韻律同步,相較沒聽音樂或是沒與音樂同步的騎士,耗氧量少了 7% 之多。在這樣的情境下,音樂就像身體的節拍器,穩住節奏並減少耗損體力。4

以上的實驗結果,都是源於聽覺神經元運動神經元的直接連結。當我們接收聲音時,兩種神經元會互相牽動,使我們自然而然想跟著音樂擺動身體,這在對音樂毫無認知的嬰幼兒身上就可以看到,並非後天習得。

近年有氧舞蹈課程、韻律課程越來越熱門多元,健身房裡不是大聲放著動感音樂,就是人人一副耳機栽在自己的世界裡,「運動音樂」隨著人們對音樂調適身體韻律的認知漸漸成為音樂產業大熱門。Spotify 的〈Groove in the Heart〉計畫,就集結該年前一萬名熱門曲目,依速度排列為極輕、輕、適中、強、極強五個級別,讓使用者根據自己的運動型態搭配音樂(例如適中級音樂適合有氧,強度音樂助於激烈的短程周期式運動等)。只要輸入自己在該運動狀態下的最大心率,便能從中找到適合歌曲,編輯個人專屬的運動歌單。

-----廣告,請繼續往下閱讀-----

根據心跳頻率建議使用者歌單。圖/翻攝自 diegoolano

另外,運動品牌 Nike 也曾與美國獨立唱片公司 DFA Records 旗下樂團 LCD Soundsystem 合作,於 2006 年在 iTunes 推出為跑者量身打造的 Original Runs 系列音樂,譬如〈45:33〉這支 45 分鐘半的作品就是根據慢跑完整週期心率製作;從堆疊的暖身、穩定的高峰再到漸緩沉澱的音樂。5

聽莫札特不會變聰明,但聽音樂確實可以治療你我

我們身體對音樂本能性的連結與反應,使音樂成為了調適身心的利器,音樂治療的研究與應用越為普及,並常使用於心臟疾病治療。

例如美國醫療機構 Mayo Clinic 的團體 Healing Enhancement Program 與音樂家 Chip Davis 合作,鼓勵病患在手術過程與手術前後聆聽音樂。8柏克利音樂學院音樂治療系的 uzanne Hanser 及其團隊研究更證實音樂對於心臟疾病治療復原期間的身體與心理狀態有所幫助,可以穩定血壓、睡眠品質、舒緩壓力與焦慮。9

-----廣告,請繼續往下閱讀-----

音樂不僅應用在病況控制,也可以協助病人親屬處理情緒。美國音樂治療師 Brian Schreck 曾與醫療中心暨小兒科醫院 Cincinnati Children’s 合作,替失去孩子的家人製作音樂,協助他們面對孩子離世的悲傷。Schreck 認為心跳聲是世上最美的聲音,而所有韻律都由此而生,因此他錄製病危孩童的心跳聲,根據心跳的節拍改編他們生前最喜歡的歌曲,讓親屬仍能感受、回憶與逝去親人的親密互動。

當心跳與音樂相遇:既能翻轉音樂又能科普!

除了研究既有音樂與生物律動的關係,也有許多人結合兩者創作多媒體藝術,打破藝術與科學的藩籬,為彼此增色。最後,我們來認識兩個讓你意想不到的跨界作品!

「聽你」創作的歌:音樂的樣貌由你的心跳決定!

儘管我們每個感官接收到的訊息都由大腦的不同部位分別處理,但我們聽音樂當下接收到的視覺、觸覺甚至嗅覺,卻可以影響我們對音樂的感受。Luciano Bernardi 與他的團隊在 2011 年研究發現,不僅音樂引起的情緒會造成心血管運動的改變,音樂對心血管的生理影響也會改變我們的情緒。6因此不僅文化、時空背景會影響人對音樂的感受,人的身心狀態也會。同一首曲子,不只一百個人聆聽會有一百種感受,一個人聽一百次也可能次次感受不同。7

紐約音樂家 J. Views 就以音樂和生理、心理的連結,創造了音樂實驗計畫〈The DNA Project〉,解構組成音樂的元素之一——節奏,反轉聽者只能「聆聽」的立場,讓他們成為創作的一分子。 2016 年以實驗成果集結發行的專輯《401 Days》,歌曲〈#Almostforgot〉,便使用聽者心跳為節拍,創造出各種版本。聽者只要將指頭置於手機鏡頭,讓它偵測隨心跳細微改變的指頭顏色,就能以心跳作為歌曲的 BPM,改變歌曲的節奏。偵測心跳後,螢幕也會出現搭配的動畫,並隨著聽者的心跳決定播放節奏。8這支作品不僅強調了聽者為音樂不可或缺的角色(若沒有「聽者」,仍會有音樂嗎?),也具體呈現了每個人對音樂的不同感受。

-----廣告,請繼續往下閱讀-----

音樂沒有絕對,心跳也是:音樂與醫療聯手讓心律不整不再難以理解

穩定的節奏使我們得以跟上音樂的韻律,但有時來點不規律,也充滿驚喜。2017 年英國倫敦大學瑪麗王后學院教授 Elaine Chew 與她的團隊進行了一項計畫〈Arrhythmia Suite〉,收錄了不同心律不整的心電圖數據做為節拍依據,再尋找有相似節奏的音樂,並將音樂調整成與對應心跳節拍完全相同的歌曲。11最後這個計畫集結成一系列的鋼琴曲目,例如 Larsen〈Penta Metrius〉便被改編成〈Mixed Meters〉;Piazzolla〈The Grand Tango〉也變成了〈III Tango〉。其實 Chew 自己也有心律不整,她與心臟專科醫生希望藉此計畫認識更多心律不整的情狀,並透過曲子改編的對比,幫助病患及家屬認識這個疾病,進而有益於醫生判定病情的不同階段,制定療程。

出生之前,我們從心跳開始認知世界;出生之後,我們從心跳開始認知音樂,甚至創作音樂。原始的「生物律動」使我們天生就能與音樂連結。因此,我們除了能利用音樂調適身心,也能透過音樂更深刻地傳遞彼此的話語、情感、記憶,與人同理、共感。

注解

  1. Rob, M. (2016, November 01). Groove is in the Heart: Matching Beats Per Minute to Heart Rate.
  1. Moelants, D. (2002). Referred Temo Reconsidered. Proceedings of the 7th International Conference on Music Perception and Cognition.
  2. Ayres, L. P. (1911). The Influence of Music on Speed in the Six Day Bicycle Race. American Physical Education Review, 16(5), 321-324.
  1. Bacon, C. J., Myers, T. R., & Karageorphis, C. I. (2012). Effect of music-movement synchrony on exercise oxygen consumption [Abstract]. The Journal of Sports Medicine and Physical Fitness, 52(4), 359-365.
  2. Leone, D. (2006, October 20). LCD Soundsystem: 45:33.
  3. Bernardi, L., Porta, C., Casucci, G., Balsamo, R., Bernardi, N. F., Fogari, R., & Sleight, P. (2009). Dynamic Interactions Between Musical, Cardiovascular, and Cerebral Rhythms in Humans. Circulation, 119 (25), 3171-3180.
  4. Szendy, P., & Nancy, J. (2011). Listen: A history of our ears. Preceded by Ascoltando / by Jean-Luc Nancy. New York, NY: Fordham Univ. Press.
  5. Blake, E. (2016, April 07). See the first-ever music video controlled by your heartbeat.
  6. Hanser, S. B., & Mandel, S. E. (2005). The Effects of Music Therapy in Cardiac Healthcare. Complementary and Integrative Therapies for Cardiovascular Disease, 320-330.
  7. Mayo Clinic. (2007, November 05). Complementary Therapies Help Patients Recover After Heart Surgery.
  8. Chow, E. (2018, October 24). The Music of Arrhythmia.
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
數理才沒這麼難!快用女力一起「設計我們的世界」
valerie hung
・2019/06/05 ・2457字 ・閱讀時間約 5 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

希望看展覽也能像看戲劇一樣,同時進行視覺與聽覺體驗,最好還能動手實作?現在國立台灣科學教育館展出的「設計我們的世界-科技性別化創新」展覽(以下簡稱「設計我們的世界」展)就能滿足你的需求!

不但可以學習新知,還能視覺聽覺雙重享受,甚至還能動手做!這麼好康的展覽哪裡找?

細膩布置,帶你看見蒙塵微光

策展人暨科教館「跨領域策展小組」組長林怡萱表示,團隊花了一年的時間收集資料、規劃主軸、設計教具、動畫與歌曲,打造亞洲還很少見,同時結合科學工程領域女性議題、性別化創新觀念與實作體驗坊的展覽。

「設計我們的世界」展除了能讓未來想投入 STEM 領域(科學、科技、工程與數學)的女孩認識科學歷史上的女性典範,也適合自認不擅長數理或不具備創新能力的大朋友與小朋友,通過展覽發現新的學習方法與自己的創新潛能。

-----廣告,請繼續往下閱讀-----

第一大展區「關鍵少數」除了精細的布置與真跡複本,策展團隊更用心安排燈光、音樂、動畫與多媒體互動等豐富元素,讓參觀者更容易融入時代氛圍。透過劇場式的體驗帶你走進雅典時代、文藝復興、啟蒙運動、十九世紀至二十一世紀等不同的時空,認識當時的女性典範與她們面臨的困境。

策展團隊結合了多媒體,讓你走進過去的世界,見識過去的女性光輝。

科學是眾人之事,並非只靠單一明星

提到對科學領域有重要貢獻的人,一般人都能隨口舉出好幾個科學家的名字,但其實科學知識能順利進展與傳播,並非只是靠科學家的努力,還需要協助研究的研究助理、製作儀器的工程師、紀錄動植物圖像的科學插畫家,製作解剖模型的工藝家,科普工作者等人的付出,才能讓科學社群蓬勃發展。

在「設計我們的世界」展,你將看到這些鮮少出現在科學主流的女性研究者身影。例如生活於十七世紀的瑪麗亞.西碧拉.梅里安 (Maria Sibylla Merian),因為對昆蟲感興趣,開始系統性觀察、紀錄昆蟲並畫下牠們不同生命階段的樣子。梅里安曾花兩年的時間,帶著女兒前往荷蘭殖民地蘇利南 (Suriname) 進行生態觀察之旅,完成記錄當地動、植物的重要《蘇利南昆蟲變態圖譜》。

-----廣告,請繼續往下閱讀-----

而啟蒙運動時期的夏特萊侯爵夫人 (Émilie de Châtelet) 作為熱愛科學與哲學知識的沙龍女主人,曾於 1740 年出版一本介紹牛頓等當代知名科學、哲學理論的科普教科書《基礎物理》 (Institutions de Physique)

在啟蒙時代的沙龍文化中,女性扮演了非常重要的角色,各種新潮思想在此萌發。

為什麼科技需要性別化創新?

被譽為現代解剖學之父的維賽留斯 (Andreas Vesalius) 曾因為當時社會分工影響,缺乏臨床經驗,簡化了對男女生理器官差異的認知而提出「除了生殖器官以外,男性與女性的器官並無差異」的誤解。而這類未察覺的性別偏誤,仍存在於現代科學工程研究與生活環境中,讓我們產生錯誤判斷或忽略可能的創新機會。

在「見維知著」展區,策展團隊結合史丹佛大學的「性別化創新」(Gendered Innovations, GI) 專案研究與國內外實際案例,從科學、健康醫學、工程或環境四大角度,帶參觀者了解「性別刻板印象」、「忽視性別差異」與「僅專注於性別」等習慣所可能產生的問題。

-----廣告,請繼續往下閱讀-----

此外,這裡也介紹了許多納入不同性別與不同年齡層使用者需求的創新案例。例如維也納政府在設計無障礙道路設計時,如何從性別的角度切入,讓無障礙道路同時提供行動不便者、提著購物袋、推娃娃車或照顧其他家庭成員的人更安全且舒適的行走空間。

你知道在西方科學研究占一席之地的實驗動物,除了生殖學與免疫學,大多數領域很少用雌性動物做研究,甚至沒詳細紀錄性別嗎?圖/flickr

數理真的很難,還是我們把它教得太難?

奧瑞岡科學與工業博物館的 Design Our World (DOW) 教案發現,如果想要吸引女孩投入工程與科技領域,在教案設計上需要注意幾個要點:提供女性榜樣、生活化、說故事、吸引感官、凸顯利他主義、個人化,使用包容性的語言,以及設計開放式與沒有標準答案的活動;這樣的教案設計同時適合不擅長通過傳統考試與競爭來學習的兒童。

策展團隊以 DOW 教案的精神打造出「匠心獨運」展區,規劃「與樹共生」、「手術解決方案」、「地震緊急救援」等遊戲,讓大小朋友直接根據任務目標,運用現場的材料,發想創意並動手打造原型 (prototype),體驗科學家與工程師創新的過程。例如在手術關卡,你將拿著細小的工具,嘗試在有限的範圍內取出物件,感受在人體內開刀的困難以及好用的醫療器材對外科手術有多重要!

-----廣告,請繼續往下閱讀-----

在「匠心獨運」展區,大朋友小朋友都可以動手嘗試發揮創意、解決問題。

如果參展者看完展覽有任何的感想想交流,可在最後的「集思廣益」區聽演講、玩桌遊、留下意見回饋,激盪出更多的思緒與創意火花。

保持對世界的好奇,找到自己的專長

對於想要投入 STEM 領域,但擔心自己數理不好、無法成為科學家的年輕女性,林怡萱分享道:

除了知識和理論外,實作能力、同理心、好奇心以及企圖心,都是科學家不可或缺的精神。

如果現在覺得不擅長某些科目,可能是沒找到適合的學習方法,她建議大家先設定想解決的問題,再收集需要的相關知識,讓學習並非單純為了考試與成績。此外,如同展覽要傳達的,現代科學工程領域包含了各式各樣的工作,也許你擅長的專業就是團隊需要的人才也不一定呢!

-----廣告,請繼續往下閱讀-----

《設計我們的世界-科技性別化創新》展期 2019.02.26-11.24,在國立台灣科學教育館七、八樓東側展廳。

本文感謝林怡萱小姐、鄭鴻旗先生