1

2
0

文字

分享

1
2
0

天王星大氣出現劇烈風暴

臺北天文館_96
・2014/08/17 ・750字 ・閱讀時間約 1 分鐘 ・SR值 578 ・九年級

-----廣告,請繼續往下閱讀-----

Uranus_Aug20142_800_407

美國加州大學柏克萊分校(UC Berkeley)Imke de Pater等天文學家利用位在夏威夷的凱克天文台(W. M. Keck Observatory)觀測太陽系第一個用望遠鏡發現的行星—天王星,發現其大氣中出現許多龐大的漩渦狀風暴系統。

在航海家號太空船(Voyager)於1986年飛掠天王星的過程中,觀測到天王星大氣中只有極少的黯淡雲朵。後來天王星在2007年通過它的春分點,即太陽直射其赤道處,之後天王星大氣便陸續出現一些大型風暴,只是絕大部分都已消逝。

然而過去幾年內,天文學家驚訝的發現這顆行星上出現許多明亮的風暴,其中包含一個怪異的特徵。在2014年8月6日(UT)觀測到的這個巨大亮斑,讓de Pater等人想到:天王星南半球在過春分點之前至過春分點的那幾年,曾出現過一個類似的明亮風暴。即使過了這麼多年,再看到類似的特徵,仍然讓這些天文學家忍不住驚呼「Wow!」。

從2007年通過春分點迄今,陽光直射區域愈來愈偏北,使天王星北極漸漸進入人們的視野,相反地,南極則不再可見。de Pater等人提到的明亮特徵被暱稱為「冰山(Berg)」,因為這個特徵僅見於極地霾(polar haze)之下,類似某個冰棚(ice shelf )剝離的冰山一樣。這座冰山從2000年開始變在天王星南緯32度至36度之間擺盪,或許還可追溯至航海家太空船掠過天王星那時。在2004年時,它變得比之前更亮;2005年時則開始朝赤道區遷移,並發展成一個更強烈的風暴系統;2009年在它距離赤道僅有幾度時,卻驟然消散。

-----廣告,請繼續往下閱讀-----

de Pater等人新見之風暴,比冰山更明亮。 它的外型與冰山非常近似,de Pater等人認為它可能與大氣更深層的一個渦流(vortex)緊密相關。從近紅外影像來看,de Pater等人已經確定這個風暴的海拔高度會很高。他們接下來將計算這個風暴的精確高度,不過從現有的近紅外波段所觀測的亮度粗估,這個風暴很可能已經高到天王星大氣的對流層頂附近。

資料來源:Cosmic Matters: Stormy Weather on Uranus, 2014.08.06, KLC

本文轉載自網路天文館

文章難易度
所有討論 1
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

2

13
3

文字

分享

2
13
3
來認識「躺著自轉」的天王星!——太陽系內唯二的冰巨行星
ntucase_96
・2021/10/31 ・2771字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

天王星是非常有趣的行星。希臘羅馬神話中,它是土星的爸爸、木星的爺爺、火星的曾祖父。比起其他行星是「站著自轉」,天王星是「躺著自轉」。太陽系 8 顆行星當中大多都觀測到了 X 光的訊號。唯獨兩顆冰巨行星:天王星、海王星沒有。終於,研究團隊從 2002 年以及 2017 年的資料中找到了天王星上 X 光訊號的證據。本文帶大家認識一些天文星有趣的歷史、文化、以及認識這一篇 X 光的研究成果。

天王星的發現與特色

天王星的視星等大約為 5.5,是一顆非常暗的星,幾乎接近人眼的極限。平時在一般都市環境中非常不容易直接用肉眼看到,只有在晴朗、沒光害的夜空中比較有機會。

航海家 2 號於 1986 年拍攝的天王星。圖/維基百科

正式的發現、命名者是英國的威廉.赫雪爾(William Herschel)。一開始猜測是個彗星,後來才確認是個行星。英國國王喬治三世還因此以一年 200 英鎊的薪水聘僱他,依照零售物價指數(Retail Prices Index)來推算的話,相當於現今一年一百萬台幣的薪水 [2]

這筆薪資顯然相當優渥,本來赫雪爾想要將這顆星命名為「喬治之星」(Georgium Sidus)。不過當時除了喬治三世和赫雪爾以外,當時喜歡這個點子的人並不多。畢竟其他的行星都用希臘神話來命名,突然冒出一顆用英國國王命名的行星怎麼樣看都不合適。

最後由柏林天文學家約翰.波德(Johann Bode)的建議定案為「Uranus」,這個字的詞源是希臘神話中的天空之神「烏拉諾斯」。幾乎每個希臘神話中的腳色都能在羅馬神話中找到對應。「烏拉諾斯」對應到的就是「凱路斯(Caelus)」,是「薩圖恩(Saturn,即土星)」的爸爸;是「朱比特(Jupitar,即木星)」的祖父;更是「馬爾斯(Mars即火星)」的曾祖父。

-----廣告,請繼續往下閱讀-----

因此在希臘羅馬神話當中,天王星、土星、木星、火星可是祖孫四代呢。

恆星一般在天空中的相對位置幾乎是不變的,要花千年、甚至萬年才有可能看到一些變化。離太陽愈遠的行星,在天上的相對位置變化愈慢。木星要回到原來的位置要花 12 年、土星更要花上 30 年,天王星更慢,要 84 年!因為天王星在天上的相對位置實在變化得太慢了,以至於早期先民即使看到了天王星,也認為它是一顆恆星。

航海家 2 號(Voyager 2)即將跟隨它的前輩航海家 1 號(Voyager 1)離開太陽圈(Heliosphere)了。圖/NASA[3]

與其它的行星比起來,天王星離地球非常遙遠。唯一抵達天王星過的太空探測器是 1977 年發射,飛了將近 9 年後才抵達的航海家 2 號(Voyager 2)。這台探測器從地球出發,觀測了木星、土星、天王星、海王星之後,繼續一路向外飛,現在幾乎已經離開了太陽系。

上面大多數的儀器都已經缺少電力、無法運作,只保留了最基本的功能。去年底對它發射訊號時,在將近 35 小時之後還是收到了回應。

-----廣告,請繼續往下閱讀-----

天王星在太陽系的八顆行星裡面,有著一個非常奇特的性質:「躺著自轉」。其他七顆行星的自轉與公轉差不多是在同一個平面上,以地球為例子,地球的自轉軸與公轉軸只差了 23.5° 左右。

但是天王星的自轉軸與公轉軸相差了 98°。如果把公轉面想像成水平面的話,地球的自轉就像是一個旋轉的陀螺,而天王星則是電風扇的扇葉。

太陽系各顆行星的自轉方向及轉軸,大多數的行星都像陀螺一樣、自轉平面與公轉一致,但是天王星卻是躺著的。圖/NASA[4]

天王星上的 X 光訊號!

太陽系的行星成員當中,除了地球以外,水星、金星、火星、木星、土星都偵測到過 X 光的訊號,甚至連彗星、以及矮行星冥王星都偵測到過 X 光。在最近這篇研究出來之前,行星當中就只剩下兩顆冰巨行星:天王星、海王星還沒有量測到 X 光。

最近,研究團隊檢視了「錢卓拉 X 射線天文台(Chandra X-ray Observatory)」的觀測數據,研究團隊量測到了天王星上的 X 光,研究結果發表在期刊《地球物理研究期刊:太空物理學(JGR: Space Physics)》當中 [5]

-----廣告,請繼續往下閱讀-----
圖/NASA [1]

錢卓拉 X 射線天文台是當代最重要的 X 射線望遠鏡。自 1999 年發射升空服役到現在,累積了非常多的觀測資料,有許許多多 X 光的重要觀測貢獻都來自於這台望遠鏡。然而宇宙間能觀測的天體實在太多啦,對天王星的觀測其實非常稀少。截至 2020 年 6 月,只有三次對天王星的觀測:2002 年 1 次、2017 年 2 次。到了這一兩年研究團隊才從這些資料中找到了天王星上 X 光的訊號。

錢卓拉 X 射線天文台(Chandra X-ray Observatory)。圖/NASA [1]

X 光是電磁波頻譜上高頻率、高能量的波段。要產生 X 光,一般來說要有特殊的環境才可以。天王星上 X 光最主要的來源是對太陽光的散射。太陽光本身是一個很強的 X 光光源,即便天王星離太陽這麼遠,太陽所發出來的X光到了天王星以後,被天王星的氣體分子散射開。這個機制是天文學家已知的,過去在木星、土星上面看到的 X 光也都是這一類。

特別的事情是,天文學家藉由木星、土星的數據推算了一個天王星上可能量測到的 X 光強度。但研究量測後卻發現 X 光的強度比推算的數值還要更強。這有幾個可能,一個是天王星對太陽 X 光散射的效果比木星、土星更好。另外一個可能性就是天王星有額外的 X 光產生機制。

目前推論與天王星周遭的帶電粒子有關。比方說,天王星和土星一樣,周圍有一圈環。當帶電粒子撞擊到天王星環的時候,就有機會放出 X 光。另外一個可能性是「極光」,當帶電粒子因為磁場等效應掉進大氣層、與大氣分子相撞後,也有機會放出 X 光。這個現象在木星上也看到過。不過到底是哪個機制就仰賴未來更多的觀測了。

-----廣告,請繼續往下閱讀-----

天王星在太陽系是很重要的存在,它是離我們最近的冰超巨星、而且還躺著自轉,讓我們有機會以不同的角度觀測行星。太陽系的冰超巨星只有兩顆,由於距離遙遠,都很不容易觀測。現在好不容易在天文星上看到了 X 光的影像,使我們得以更全面地了解冰超巨星的性質。對太陽系內、太陽系外的行星都能有更全面的理解。

參考資料:

  1. NASA / First X-rays from Uranus Discovered
  2. Measuring Worth
  3. NASA Planetary Photojournal / NASA Voyager 2 Could Be Nearing Interstellar Space
  4. WASP Planets
  5. R. Dunn et al., A Low Signal Detection of X-Rays From Uranus, Journal of Geophysical Research,  (2021)
  6. SciTechDaily / First Detection of X-rays From Uranus
所有討論 2
ntucase_96
30 篇文章 ・ 1344 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

5

70
2

文字

分享

5
70
2
穿越兩百億公里的家書,航海家二號妳收到了嗎?
陳子翔_96
・2020/12/21 ・2312字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

距離我們大約兩百億公里的太空中,有一架名為航海家二號的探測器已經工作了數十年,就在不久前,NASA 送出了久違的訊息試圖再次與她連絡上……

為什麼說久違呢?是這樣的,今年初因為位在澳洲坎培拉,負責聯繫航海家二號的訊號收發站要進行天線設備升級,然而這又是目前唯一能和航海家二號聯繫上的訊號收發站,也因此必須暫停與航海家二號的聯繫。

負責聯繫航海家二號的訊號收發站——CDSCC。圖/Wikipedia

43 年從未斷訊的航海家二號

雖然說這次與航海家二號數個月的斷訊是計畫之中的事情,但其實還是讓 NASA 的工程師與科學家們有些緊張。各位可以回想看看,自己用過壽命最長的電子產品或家電用品是什麼呢?也許你會想到用了五年的手機,十年的電視機,又或是用了二、三十年的電鍋或冰箱。但相信應該很少人家裡有超過四十年,而且完全沒有維修過卻還能使用的電器吧。然而航海家二號從發射至今已經獨自在廣大的太空中運作超過 43 年了,在她離開地球時,台灣第一條高速公路與電氣化鐵路都還在建設中呢!也因此要與一架骨董級探測器斷訊八個月的確滿讓人擔心的。

不過話說現在科技已經進步非常多,近年也不乏許多先進的新探測器持續進入太空探索,為什麼我們仍這麼關心航海家二號的動向呢?其中有個很大的原因是,即便新的探測器有著更先進的儀器設備,航海家二號帶來的貢獻和歷史意義仍然難以被超越。

-----廣告,請繼續往下閱讀-----

就讓我們藉由著個機會來重溫這架傳奇探測器光輝的故事吧!

航海家二號的誕生:太空「大航海時代」的序章

在太空探索的歷史上,1960 年代是載人太空任務發展的黃金年代,第一位進入到太空的人與第一位踏上月球的人都是在 1960 年代發生的。而 1970 年代,就可說是探索太陽系的「大航海時代」了,在這十年間,許多無人探測器先後出發探訪太陽系的各大家族成員,像是首次登陸火星、首次飛掠各大行星的成就都在這幾年間達成,而航海家二號可說是其中最具代表性的探測器之一。

1973 先鋒十號史上首批飛掠木星旁拍攝的照片。圖/NASA
1976 年維京 1 號探測器 史上首批火星表面的照片。圖/Wikipedia

揭開太陽系外圍的神秘面紗,乘載希望奔向宇宙深處

有別於先前多數的太空探測器都是以一顆特定星球作為目標,航海家二號最特別之處,就在於她造訪了所有外太陽系的氣體行星—木星、土星、天王星和海王星。而要完成這樣的壯舉必須仰賴這四顆行星特殊的排列位置,讓探測器在每在造訪一顆行星的同時,也正好能巧妙地讓該行星的重力拉自己一把,幫助探測器用最節省燃料的方式飛向下一顆行星,而這樣的機會每隔 176 年才會有一次呢!

航海家二號的飛行路線,由內而外造訪四顆氣體行星。圖/Wikipedia

把握住這樣的機會,航海家二號在 1977 年八月升空,並在接下來的十年先後收集了四顆氣體行星的重要科學資料,同時也傳回了許多令人屏息的經典照片。更特別的是,在四十多年後的今天,航海家二號仍然是唯一造訪過天王星和海王星的探測器,因此下次看到像是下圖這樣清晰漂亮的天王星和海王星影像,就可以跟朋友說這個照片是航海家二號拍攝的,也許朋友就會以崇拜的眼光看你(並不會)

-----廣告,請繼續往下閱讀-----
航海家二號所拍攝的天王星海王星。圖/NASA

1989 年航海家二號飛掠了最後一個計劃中的目標天體—海王星,然而她的任務卻還會持續下去,繼續為我們帶來外太陽系,甚至是「太陽系外」的第一手資訊,例如太陽磁層頂的位置、星際空間的磁場與宇宙射線強度等等……

同時,航海家二號也帶著地球人想送給外星人的「小禮物」,一張收錄用全球各種語言打招呼的錄音,以及數張影像檔案的唱片和唱片播放器。雖然說要在茫茫宇宙中「不小心撿到」這個禮物的機率實在太低,但這樣的紀念品某種程度也象徵著人類踏出航向宇宙的步伐時,做出的浪漫宣示吧!

航海家二號的金唱片與背景中的航海家二號。圖/NASA

重新連繫航海家二號

今年十月天線更新完成後,NASA 終於能送出睽違八個月,一封「來自地球的家書」給航海家二號,而她也順利收到並有所反應,彷彿對地球上的我們說:「哈囉地球上各位,好久沒有各位的消息了,很高興又收到你們的信,我在遙遠的太陽系外也都還好喔!」

這次成功的聯繫也代表著航海家二號的任務依然持續進行著,不過 NASA 的工程師也估計探測器的電力應該所剩不多了,我們終究在未來的某一天必須和這部偉大的探測器告別,但航海家二號仍將繼續帶著人們探索未知世界的精神,航向星空深處。

-----廣告,請繼續往下閱讀-----

參考資料

所有討論 5

0

2
1

文字

分享

0
2
1
重力理論的演進與環繞黑洞的恆星
科學大抖宅_96
・2020/05/26 ・2647字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

-----廣告,請繼續往下閱讀-----

十七世紀末,牛頓提出的萬有引力理論象徵現代天體力學的開始;人們利用物理原理來描述天體運行,並藉由天文觀測逐步修正理論或計算方法的缺失。以天王星的發現為契機,科學家開啟了一連串對行星軌道的研究;這些事件不但成為天體力學發展史的重要標誌,最終竟促成重力理論的演進,甚至延續到現今,反應在我們對黑洞的觀察上。

這一切,都要從 1781 年,英國天文學家赫雪爾(William Herschel,1738-1822)在自家庭院,從望遠鏡中看到一顆彗星說起……

天王星的詭異行徑

在赫雪爾將發現回報給皇家學會後,其他科學家也紛紛對這顆彗星進行調查。很顯然的,它似乎沒有彗星尾巴,而且運行軌跡較接近圓形,不像其他彗星以非常扁的橢圓軌道繞行太陽;與其說是彗星,它更像是在土星軌道之外環繞太陽的行星──這就是天王星的發現。

儘管已驗明正身,天王星仍然困惑著接下來數十年的天文學者:它的實際軌道和牛頓萬有引力理論的預測並不相同。這是牛頓理論的失敗嗎?還是觀測錯誤了呢?1846 年,法國天文學家勒維耶(Urbain Le Verrier,1811-1877)利用數學計算提出預測:存在某個未知星體影響了天王星的運行,造成理論和觀測的差異;他也指出該星體的軌道、質量和位置大約為何。

-----廣告,請繼續往下閱讀-----

一陣子之後,柏林天文台收到勒維耶的報告,便馬上著手進行未知星體的搜尋工作;只花不到一個小時,海王星就被找到,與勒維耶預測的位置相差不到一度──史上第一次,單純憑藉數學計算發現新行星[1]

奧本‧勒維耶(圖片來源

水星的運行軌道也存在異常

隨著海王星的發現,牛頓萬有引力理論可說獲得空前勝利。然而,天文學家拿重力理論來推估行星運行的嘗試並未到此為止。1859年,勒維耶再度出擊,聲明水星軌道的進動也跟牛頓萬有引力理論的計算有所出入。

在理想狀況下,依據牛頓萬有引力理論,水星環繞太陽的運行軌道應該要固定不變;然而在實際上,因為受到其他行星的重力拉扯(和另外一些次要因素),水星軌道的近日點(以及軌道本身)會緩慢產生變化──這稱為水星的近日點進動。

-----廣告,請繼續往下閱讀-----

不止水星,其他行星也都會有進動;只是水星距離太陽最近,進動效應最明顯。圖為地球繞行太陽的軌道進動示意;進動效應被刻意放大。(圖片來源

勒維耶分析了從 1697 年到 1848 年的水星觀測資料,發現水星的近日點進動,與用牛頓萬有引力理論考慮其他行星的影響所算出來的進動數值,每世紀差了三千六百分之三十八(38/3600)度[2]──這是多麼微小的數值,卻又真實存在!

因為之前海王星的成功經驗,勒維耶猜想:介於太陽和水星軌道之間,可能存在未曾發現過的星體,影響了水星的運行;他將其命名為瓦肯星(Vulcan)[3]

無奈地,這一次任憑天文學家花費幾十年尋找,甚至勒維耶也已去世良久,瓦肯星始終不見蹤影;而水星近日點進動問題便懸而未決,延續到二十世紀。在 1915 年,愛因斯坦才利用廣義相對論成功將此問題劃上句點。

-----廣告,請繼續往下閱讀-----

愛因斯坦在1915年的論文中,運用廣義相對論解決了水星的近日點進動問題。(圖片來源

根據我們目前所知,水星的近日點每世紀會移動約 574/3600 度,其中牛頓萬有引力效應佔了 532/3600 度,而廣義相對論造成的效應幾乎剛好就是兩者之差。廣義相對論針對牛頓萬有引力定律所描述的重力,做出了細緻的修正──這個修正在大多數狀況下,微小到可以忽略;只有在水星近日點進動這樣的例子,差異才會顯現出來。可以說,水星近日點進動問題的解決,是幫助廣義相對論得到世人認可的重要原因之一。

廣義相對論的黑洞測試

科學家拿星體運行來測試重力理論的故事就到此為止了嗎?非也。既然原本得到廣泛驗證的牛頓萬有引力定律,因水星近日點進動現象而被找到缺陷,那麼現在大獲全勝的廣義相對論,自然也有可能在某種特殊環境下暴露弱點──科學家於是把腦筋動到了黑洞頭上。

黑洞堪稱宇宙裡數一數二極端的天體,龐大的重力吞噬一切,無疑是測試重力理論的理想選擇。就像水星繞行太陽會產生進動,是否,繞行黑洞的星體,其軌道也會有進動現象呢?又是否完全可以用廣義相對論來解釋?

-----廣告,請繼續往下閱讀-----

針對廣義相對論的正確性問題,一群科學家團隊花了二十七年,觀測環繞無線電波源人馬座A*(Sagittarius A*)運行的恆星S2,並於今年(2020)四月,在《Astronomy & Astrophysics》期刊發表最新成果

人馬座A*位於銀河系中心,距離地球約兩萬六千光年,質量估計為四百多萬倍太陽質量,據信極可能是超大質量黑洞;環繞於外的 S2 具有十多倍太陽質量,與人馬座A*的最近距離是十七光時(海王星到太陽距離的四倍),軌道週期為 16 年(海王星軌道週期是 165 年)。研究發現,S2近心點(pericenter,最靠近重力中心的點)的進動約為每軌道週期 12/60 度,與廣義相對論的預測相符──即使在重力如此強大的環境,廣義相對論依舊通過試煉。

藝術家描繪的S2繞行人馬座A*示意圖;為了清楚顯現 S2 軌道因為進動而逐漸改變位置,進動效應被特意放大。(ESO/L. Calçada

本次研究的意義

儘管沒有發現廣義相對論的破口,這次的成果仍然別具意義:它是人類第一次確認以黑洞為中心的進動現象;再者,若人馬座A*附近存在某些看不見的物質(如暗物質,或其他小型黑洞等等),科學家也能依據數據給出嚴格的質量上限。可以肯定的是,隨著觀測技術的發展,我們對於宇宙、或者黑洞的理解,將持續進步;說不定哪天,還真能發現廣義相對論的問題呢。

-----廣告,請繼續往下閱讀-----

參考資料

註釋

  • [1] 實際上,勒維耶計算出的海王星軌道,與真正的海王星軌道仍有一些差距。但這並無礙於發現海王星的偉大成就。
  • [2] 多年後,其他科學家重新評估牛頓萬有引力理論和實際觀測的差距,得出每世紀三千六百分之四十三(43/3600)度的數值,跟現代觀測吻合。
  • [3] 就跟《星際爭霸戰》(Star Trek)裡的瓦肯星同名。不過可以確定勒維耶並不是因為看了《星際爭霸戰》才這麼命名的。
科學大抖宅_96
36 篇文章 ・ 1732 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/