0

0
0

文字

分享

0
0
0

古人是怎麼觀測天體的?過去和未來的天空會長的一樣嗎?——《關於夜空的 362 個問題》

PanSci_96
・2019/07/23 ・3119字 ・閱讀時間約 6 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

編按:本文摘自《關於夜空的 362 個問題》,蒐集了英國最長壽科普節目《仰望星空》的觀眾提問。所有你對太空宇宙會有的疑問,都將在本書中為你解答。本節討論的是「過去和未來的天空」。

 

古文明如何準確測量星星的運動?

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。圖/pxhere

巴比倫人和蘇美人是世界上最古老的天文學家,他們在三千多年前居住於現在的阿拉伯地區。

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。當時的人可能已經知道,在不同的時間會看到不同的星星排列,但他們應該還不知道這是為什麼。這些文明是最早注意到天象變化的文明。他們可能注意到有些行星好像會在星星之間移動,特別是最亮的那顆:金星。當時也已經知道在夜晚或早上都看得到金星,蘇美人還發現了它的周期性。當然,他們並沒有因此思考到其他行星,而是聯想到神祇的活動。

巴比倫人知道各種不同的周期,主宰月相改變的周期就是其一;不過更重要的是日食和月食的周期。這些周期也流傳下來,到了在天文學方面非常有條理、邏輯的古希臘人手中。最令人震撼的天文事件自然是日食與月食。

-----廣告,請繼續往下閱讀-----
最令人震撼的天文事件自然是日食與月食。圖/pexels

事實上,許多古代文明都對這種現象感到害怕。雖然因為太陽與月球在天空中的運動方式不同,日月食發生的時間間隔似乎並不規律,但其實大約是每十八年發生一次。這段時間被稱為沙羅周期,是太陽、地球、月球三者形成的幾何系統回到相同配置的時間。再加上地球的自轉,就必須使用三個沙羅周期來計算,所以是大約五十四年發生一次。這表示,如果你觀察到一次日食或月食,那麼在一萬九千七百五十六天(或是五十四年又一個月)之後,在地球上同一個地點就能再看到一次幾乎一模一樣的日食或月食。

古代天文學留下令人著迷的遺產之一,就是安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。銅製的安提基瑟拉儀是一九○○年在希臘的安提基瑟拉島發現的,經過深入研究後,學界發現這是由大約三十個細心配置的鑲齒排列而成的儀器,用來預測太陽、月球、行星在任何一天的方位。

安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。圖/wikipedia

製造者想必不知道太陽系的配置,因為這個儀器的設計是以地球為中心的模型為基礎,可是它對位置預測的準確度卻讓人驚訝。過去從來沒發現過類似的儀器;本質上而言,這是目前已知最古老的科學計算機。

至於星星本身的運動,在古代來說,是無法在某人的有生之年內測量出來的。古人很精細地測量了太陽在天空中的位置,所以能確定像是冬至、夏至這樣的至點以及春分、秋分的二分點時間。二分點出現在太陽通過天球赤道的時候,而有非常多的古代天文學家都會觀測太陽在天空中的位置。

-----廣告,請繼續往下閱讀-----

地球自轉的歲差怎麼算?

西元前二世紀的希臘天文學家希巴克斯(Hipparchus)指出,和前人觀測到的結果相比,太陽在二分點的位置出現了相對性的改變,這個發現被稱為「分點歲差」。現在我們知道這是因為地軸相對於星星的移動所造成的,而這個發現成為了精密天文學的轉捩點。歐洲太空總署(ESA)的衛星伊巴谷(Hipparcos)就是利用這位天文學家姓名的發音,但是字母的拼法不同,因為其實這是「高度精密視差測量衛星」的縮寫。

伊巴谷是最早踏出第一步,排除地球是所有運動的中心的人。他觀察到太陽在全年中移動的速度會變化,而且計算出太陽中心的運動,一定會輕微地偏離地球。大約兩千年後,科學家才真的拋棄成見,推翻地球中心論,建立出地球以橢圓形軌道環繞太陽轉動的理論。

地球中心說。圖/wikipedia

巴比倫人和希臘人都是最早在天文學上跨出一大步的民族,他們會測量太陽、月球和行星的移動。兩千多年後,哥白尼、第谷,還有克卜勒才又往前邁了一大步,拋棄地球是宇宙中心的理論。我(諾斯)認為,我們現在即將跨出在天文學與宇宙學方面重大的第三步,開始了解宇宙的真實規模。

英國最適合看極光的地方是哪裡?

唯一一個算得上看得清楚的地方是蘇格蘭。一旦越過北方的邊界,極光就沒那麼少見了,不過也沒有像挪威北部或阿拉斯加那麼頻繁。重點是要到一個真的很暗的地方,而蘇格蘭有些地方還能滿足這個條件。

-----廣告,請繼續往下閱讀-----

所以定期觀測是值得的,不過也得準備好可能要等好一段時間。如果你去到挪威北部像是特浪索這樣的地方,那麼你在一整年裡,除了永晝的日子以外,幾乎每個晚上都能看到極光。

在《仰望夜空》播出的期間裡,天空有些什麼改變?夜空中有沒有新的天體出現,或者有沒有星星或其他天體的位置、外觀發生了改變?

很顯然,就算是在比《仰望夜空》節目播出時間更長的期間裡,星星和行星都不會改變。我們的確有看到幾顆彗星,一、兩顆明亮的新星。除此之外,情況都沒什麼改變。

我在主持《仰望夜空》的期間看過最壯觀的景象,應該是海爾波普彗星,那真的很壯麗,而且有超過一年的時間都能用肉眼看到它。我想當它離開我們時,我們都很傷心。別難過,它四千年後還會回來!

當然有些行星總是在改變,尤其是木星和土星。木星的雲帶在過去幾年中一直出現強烈的變動,而土星上則發生了劇烈的風暴。相當值得持續關注。

-----廣告,請繼續往下閱讀-----
圖/wikipedia

未來的觀星者會看到如我們現在所看到的北斗七星、獵戶座腰帶、老鷹星雲等這些星星的排列嗎?

根據我們目前的預測,未來不會有可偵測到的改變,但是當然如果是一萬年或是更久之後,這些星座一定會有改變。舉例來說,大熊座會扭曲,因為它的兩顆星(瑤光與天樞)在太空中是以與其他五顆相反的方向移動,遠離對方的。但是這些星星在太空中的移動實在太慢了,所以很難用肉眼看出來。

提醒你,一百萬年之後再回來,天空就會變得很不一樣。隨著時間過去,星座會因為星星的移動而變形,新的排列也會變得明顯。就連星雲也會隨著它們的中心出現氣體與塵埃生成的星星而改變,不過這個過程會需要幾百萬年的時間。

如果我們可以把時間快轉十億年,那時候的天空會是什麼樣子?會有多少星星不再存在?

如果快轉那麼長的時間,所有星座都會有非常大的改變,到時候我們已經認不出來那片天空了。除此之外,我們也無法辨識一些我們熟悉的星星,例如獵戶座的參宿七,到了那時候一定已經經歷了紅巨星的階段,也許在超新星的爆炸中死去。同樣的事也會發生在我們鄰近星系中的很多大質量的恆星上,不過也會有更多的恆星在天空中的其他位置出現。

如果把太陽系從銀河中拔出來,然後完整地放在太空中另外一個空曠的區域,我們會變好還是變糟?

這個嘛,我們會悲慘很多,因為我們只能看到自己太陽系的天體,對於星星會一無所知。事實上,我們的知識會被局限在很小的範圍內,有點像是去倫敦但只參觀維多利亞車站而已。一定要記得,天文學是最古老的科學之一,是古代文明不斷地重寫,增進我們對宇宙的了解的成果。

-----廣告,請繼續往下閱讀-----

——本文摘自《關於夜空的 362 個問題:從天文觀測、太陽系的組成到宇宙的奧祕,了解天文學的入門書》,2019 年 4 月,貓頭鷹出版

文章難易度
PanSci_96
1219 篇文章 ・ 2204 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1020 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

4
2

文字

分享

0
4
2
星光,指引地球的未來——《困惑的心》推薦跋
時報出版_96
・2023/07/17 ・4372字 ・閱讀時間約 9 分鐘

  • 潘康嫻/中研院環境變遷研究中心博士後研究員

人類是天生的科學家。我們生來就想知道為何星星會閃爍,想知道為何太陽會升起。


加來道雄

地球上有一群人總喜歡抬著頭,看著夜空中點亮大地的星燈,這些星光夾藏著宇宙的祕密,穿透無數個光年,抵達藍色的星球。除了欣賞夜色之美,這一群人更試圖從中看出點端倪,這些熠熠星光是怎麼來的?宇宙是什麼樣子?為什麼會有地球?生命從何而來?還有其他如地球般的星球嗎?那裡也有文明嗎?好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。

好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。圖/envatoelements

向遙遠的星系發送信號 尋找未知的外星文明

人類的世界觀從曾經的地球放眼到太陽系,隨著科學與科技的進步,二十世紀的物理學開創宇宙論的發展,至二十一世紀天文觀測的黃金年代,不停歇地向深邃的星空探索,走出新的視野。近二十多年的諾貝爾物理獎,多達三分之一肯定天文學的貢獻,例如 2019 年獲獎的三位學者,一位建構宇宙大霹靂理論模型,另兩位發現一顆繞著另個太陽類型恆星公轉的系外行星。宏觀的宇宙視野,加上相對微觀的行星視角,近代的天文學一再刷新人類對宇宙演化及地球定位的認知。

天文望遠鏡和太空科技的進展,讓現代的天文學家得以挖掘宇宙暗藏的驚奇,透過紅外線觀測,我們看到隱藏在可見光背後恆星誕生的搖籃,也發現了宇宙考古學的線索。2019 年諾貝爾物理學獎得主之一詹姆士・皮博斯(James Peebles)花費大半輩子,帶領我們梳理宇宙 137 億年演化的歷程,如今我們知曉實質物體的總質量佔宇宙的 5%(其餘為 68% 的暗能量,與 27% 的暗物質)。在這 5% 的質量中,粗略估計大大小小星系中的星點,加總起來約略有 1027 顆恆星。假使每顆恆星誕生時也伴隨著行星系統的發展,在如此龐大的總數下,是否也有另一顆適合生命發展的星球?

放眼望去,茫茫星海,僅吾唯一?以地球人的角度思考外星生命的可能性,德雷克公式(Drake equation)將文字的問號轉成可運算的概念,考慮環境因素和發展文明的可能性,估計銀河系中存在著少則一千,多則一億的文明數量。但這些年,沒有人聯絡我們,我們也沒有找到對方,費米悖論提醒了估算與現實的落差。天文學家藉著太空科技的發展得以主動探尋,1972 年的先鋒號和 1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。除了寫信,還可以像發電報一樣,1974 年的阿雷西波訊息(Arecibo message),對著遠在 25,000 光年外的 M13 球狀星團發送訊號,寄望能在高齡星團中找到找到高智慧文明存在的可能性。然而,這一去一回,收到回音得等上五萬年,已不知道是人類幾代以後的事了。

-----廣告,請繼續往下閱讀-----
1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。圖/wikipedia

一如 15 至 17 世紀的大航海時代,歐洲船隊面對大海,莫不引頸期盼能在望遠鏡裡看到遠方的陸地。行星猶如當時的目標,由於行星不會自行發光,尋找行星的難度如同在千里之外的明亮燈塔旁邊瞧見一隻蚊子,然而技術的困難並未讓人退卻,科學的精彩就在於想辦法突圍。

更清晰地遙望遠方 用太空望遠鏡在地球上一起遨遊宇宙

1995 年米歇爾・麥耶(Michel Mayor)迪迪爾・奎洛茲(Didier Queloz)藉由分析恆星光譜中的都卜勒效應(目標物遠離觀測者時,其光譜會往長波方向拉長稱作紅移,反之靠近則往短波壓縮稱之藍移),在飛馬座找到繞著太陽類型的恆星公轉的第一顆系外行星飛馬座 51b(51 Pegasi b),為系外行星大發現時代展開序幕,也讓他們在 2019 年共享諾貝爾物理獎的殊榮。至今近 25 年觀測資料的累積,尤其有了克卜勒太空望遠鏡和接續的凌日法系外行星巡天衛星(Transiting Exoplanet Survey Satellite,TESS),系外行星數量自 2014 年開始大幅增加,截至今年 2023 年 6 月統計,約有 5,500 顆系外行星,依據型態將系外行星分成四類:氣體巨行星(又稱熱木星)類海王星超級地球類地行星。天文學家從統計數量和行星形成動力學模型中獲得豐富的訊息,也讓太陽系的形成與演化有了更進一步的認識。以一個系統中的行星質量做序列可以分成四種:由小至大(太陽系即為此類)、由大至小、混合、和大小相似,科學家發現像太陽系八大行星的排序反而非常稀有,像 TRAPPIST-1 系統中七顆行星大小雷同的類型倒是常見,人們才驚覺原來太陽系與其八大行星的組合是如此與眾不同。這個獨特也包含太陽系的氣體行星木星,有顆大質量的木星在外,像吸塵器一樣讓闖入太陽系的天體轉向(例如 1994 年的舒梅克-李維彗星撞擊木星事件),減少外來者體撞擊內太陽系的機會,使得位在適居帶的地球有足夠安全的環境與時間孕育生命。原來要有機會誕生生命,先決條件也要天時地利「星」和。

有沒有一種可能,其實有外星訊號,只是現今的科技還無法察覺和解讀? 二十一世紀的新視野多來自百年前科學家所闢的路,例如愛因斯坦在廣義相對論提出對重力的新見解,物體質量造成的空間扭曲,只是改變的幅度之小不易測量,直至 2015 年天文學家終於在絞盡腦汁精細設計之下,成功打造觀測重力波的天文望遠鏡(Laser Interferometer Gravitational-Wave Observatory,LIGO),2017 年人類首次觀測到雙中子合併事件,解開化學元素週期表上的重金屬形成之謎。在天文學的領域,一個計畫從靈感發想、規劃藍圖、開工建造、出發觀測、收集資料到計畫結束,從開始到最後的時間跨度,往往超過科學家本身的職業生涯。科學家年輕時的構思,常須藉由後生晚輩接棒執行,有生之年不一定看得到科學成果,而這一路上牽起了一代又一代的傳承,一起讓科學的進展跑得更遠,跑向遠在未來的新發現。本篇文章談及的計畫,在筆者的學生時代,早已如火如荼地展開,伴隨著計畫的執行和觀測資料的回傳與分析,是前輩們的堅持與努力,也是帶給新生代天文學家的禮物和邀請:現在的成果來自於我們過去的努力,而未來要由現在的你們來開創。

太空望遠鏡的升空協助天文學家得以更清晰地遙望遠方,讓系外行星的發現轉為低風險的冒險之旅,安全地帶著大家想像另一個世界的雛形,正當書中的主角,天文生物學家拜恩教授,為兒子羅賓說起異星見聞時,好似向星空開啟一扇扇門,父子倆得以一起遨遊宇宙。

-----廣告,請繼續往下閱讀-----

穿越都市的水泥叢林,遠離學校與人群,當我讀到書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向,令我不禁想起,曾經只是為了想看星星,所以去登山的自己,無意間在山林尋回自己的心。臺灣的山勢陡峭地形多變,得要十分專注在腳下的步伐與眼前的山徑,此刻陪伴自己的只有呼吸和心跳。踩著吃力的腳步,一瞬間,世界難得寧靜,只聽得見自己的聲音,「離目標還有些距離,繼續是前進,回頭是放棄。若是堅持,不知還有多少難關?若是放棄,我能接受放棄的自己嗎?難道是走錯路或迷路,所以才這麼難行,那麼路又在何方?」為一睹繁星,在光害日趨嚴重的情況下只得越走越深山,不只用腳感受臺灣地貌的鬼斧神工,還要感官全開地觀察瞬息萬變的天氣,多認識她才能做出適當的應變確保登山安全。白天的路上觀察自然的氣息,與重建內在的自己,晚上終見美麗的星空,走在一條條的山岳路線,整頓人生朝著目標向前行。

書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向。圖/envatoelements

回首看看我們腳下的地球

天文學總是背對著地球往外尋找新的未知,試圖解讀新收到的觀測資料與訊息,然而來自腳下的訊號呢?地球也是行星,是離我們最近的行星,她孕育了這世界的美好,但她的語言,我們真的懂了嗎?羅賓對外界的反應多來自於他所觀察到的地球,作為父親的拜恩教授要怎麼回應孩子呢?

當我們汲汲營營想向外拓展新知識、新世界時,可曾留意腳下正在發燙?若將地球的呼喊換成人類的語言,環境變遷的種種跡象就是地球發燒的訊號。以往科幻災難片當中的賣座奇觀,漸漸成為生活新聞,熱浪、野火、水災旱災、劇烈天氣變化,讓全球不只要解決眼下的困境,也要未雨綢繆地做永續經營的規劃,即刻採取行動已是迫在眉睫。

2021 年,聯合國政府間氣候變遷專門委員會(IPCC)公布第六回的全球氣候變遷評估報告,提及全球暖化現象在冰河面積、海平面上升、全球氣溫,及海洋酸化等等的科學研究報告中,出現許多令人擔憂的新紀錄,並指出二氧化碳與溫室氣體排放量的關聯性,巨變的環境讓各類生物物種面臨生存威脅。因應這場危機,全球達成共識目標於二十一世紀的地球平均氣溫,相比十九世紀最多僅能上升攝氏 1.5 度,並且在 2050 年達成全球淨零碳排放。今日世界各國包含臺灣正積極發展替代能源減少碳排放,同時開發技術增加碳匯,企圖集結眾人的力量把大氣中的碳存回大地。但我們能在有限的時間內力挽狂瀾嗎?假使目標如期達成,是否就高枕無憂了呢?地球和我們的日子就美好了嗎?

二氧化碳與其他溫室氣體排放帶來的環境巨變,讓各類生物物種面臨生存威脅。圖/envatoelements

從人類張開眼睛認識日月星辰,建立了神話、曆法和文明,發展農耕,再到科學與工業革命,一路解析宇宙和地球的起源、歷史、環境、命運。星星帶給人類的啟發,讓人類的足跡已從地球走向太陽系,從更高的視野回頭凝視地球那令人屏息的湛藍,離開地球的探索,讓我們重新看見地球。文化藝術與科技文明的發展一直以來與大自然息息相關,進步固然帶給人類生活和思維的改變,然而過度的開發讓環境失衡,讓現在的我們必須啟動地球生命保衛戰,永續經營之前要先理解,如何理解則引發更多的提問,解答提問的過程中人類將深刻感受地球的脈動,為身為地球人感到驕傲。BE-WILD-ER-MENT 的故事在過去已開始,現在的行動是創造機會、還是命運?未來,讓我們和這顆有心跳的藍色星球一起來回答吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《困惑的心》,2023 年 7 月,時報出版,未經同意請勿轉載。

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

3
1

文字

分享

0
3
1
【成語科學】斗轉星移:中國古代的天體觀測
張之傑_96
・2023/06/23 ・1118字 ・閱讀時間約 2 分鐘

唐代的王勃是個神童。他 14 歲時路過南昌,州牧(地方首長)重修滕王閣竣工,舉辦盛大宴會,他也參加了。州牧提議寫篇文章,正在你推我讓的時候,王勃已揮筆完成,這就是著名的〈滕王閣賦〉。

文末繫一首詩,其中有兩句「閒雲潭影日悠悠,物轉星移幾度秋。」

詩中的物轉星移,已成為成語。有人改成物換星移,或斗轉星移,也都是成語。這三個成語的意思完全一樣,都用來形容時光流逝,或歲月變遷。讓我們以斗轉星移作例子,來造個句吧。

  • 斗轉星移,海峽兩岸已從武裝對峙,變成可以互相往來了。
  • 歷經斗轉星移,同學們都已老邁,不禁令人感嘆時光無情。

斗轉星移的「斗」,指北斗七星,位於天球的北方,是很容易辨認,且四季都能看到的一組星星。北斗七星斗杓的指向,會隨著季節改變:春季時斗杓指向東,夏季指向南,秋季指向西,冬季指向北。這就是「斗轉」的由來。

北斗七星容易辨認,且一年四季都能觀賞到。圖/Envato Elements

古代的天文學家假想「天」是個球體——天球。天球是以地球為中心,向外擴充而成的球面。由於地球自轉,我們覺得天球在轉,天球上的星星和太陽、月亮一樣,都是逆時針運行,每小時約轉動 15 度。因為整個天球都在轉動,所以恆星在天球上的相對位置固定不變,只有太陽、月亮、八大行星(肉眼只能看到 5 顆)、小行星、彗星的相對位置會變。

-----廣告,請繼續往下閱讀-----

無論哪個民族,都會將肉眼看得清的星星分組,每組之間作一些連線,然後比附成人物、動物、器物等等。這種分組,有利於天文觀測。以北斗七星來說,連起來很像古代的舀酒器——斗。因為位於天球的北方,所以稱為北斗。

同樣的星空,中西各有一套觀測體系。星座,是西方發展出的觀測體系,總共有 88 個,大家所熟悉的黃道十二宮,就是其中的 12 個。星宿,是中國古代發展出的觀測體系,總共有 283 個。

同樣的星空,東、西方各有一套觀測體系。圖/Envato Elements

星座和星宿分屬兩個系統。以斗宿(北斗七星)來說,就是大熊座「大熊」的臀部和尾部。大熊座肉眼看得到的有 17 顆星,中國的斗宿是其中的 7 顆。

由於地球公轉,每天星空昇起的時間會差幾分鐘。其結果是:不同的季節,天球上的星空各不相同。一年之後的同一天,才能看到完全相同的星空。

-----廣告,請繼續往下閱讀-----

古人早已觀察到星空的週而復始變化,也觀察到,斗宿的指向隨著季節發生變化。成語斗轉星移,就是從這兩個天文現象衍生而來的。

張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。