0

0
0

文字

分享

0
0
0

古人是怎麼觀測天體的?過去和未來的天空會長的一樣嗎?——《關於夜空的 362 個問題》

PanSci_96
・2019/07/23 ・3119字 ・閱讀時間約 6 分鐘 ・SR值 511 ・六年級

編按:本文摘自《關於夜空的 362 個問題》,蒐集了英國最長壽科普節目《仰望星空》的觀眾提問。所有你對太空宇宙會有的疑問,都將在本書中為你解答。本節討論的是「過去和未來的天空」。

 

古文明如何準確測量星星的運動?

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。圖/pxhere

巴比倫人和蘇美人是世界上最古老的天文學家,他們在三千多年前居住於現在的阿拉伯地區。

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。當時的人可能已經知道,在不同的時間會看到不同的星星排列,但他們應該還不知道這是為什麼。這些文明是最早注意到天象變化的文明。他們可能注意到有些行星好像會在星星之間移動,特別是最亮的那顆:金星。當時也已經知道在夜晚或早上都看得到金星,蘇美人還發現了它的周期性。當然,他們並沒有因此思考到其他行星,而是聯想到神祇的活動。

巴比倫人知道各種不同的周期,主宰月相改變的周期就是其一;不過更重要的是日食和月食的周期。這些周期也流傳下來,到了在天文學方面非常有條理、邏輯的古希臘人手中。最令人震撼的天文事件自然是日食與月食。

-----廣告,請繼續往下閱讀-----
最令人震撼的天文事件自然是日食與月食。圖/pexels

事實上,許多古代文明都對這種現象感到害怕。雖然因為太陽與月球在天空中的運動方式不同,日月食發生的時間間隔似乎並不規律,但其實大約是每十八年發生一次。這段時間被稱為沙羅周期,是太陽、地球、月球三者形成的幾何系統回到相同配置的時間。再加上地球的自轉,就必須使用三個沙羅周期來計算,所以是大約五十四年發生一次。這表示,如果你觀察到一次日食或月食,那麼在一萬九千七百五十六天(或是五十四年又一個月)之後,在地球上同一個地點就能再看到一次幾乎一模一樣的日食或月食。

古代天文學留下令人著迷的遺產之一,就是安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。銅製的安提基瑟拉儀是一九○○年在希臘的安提基瑟拉島發現的,經過深入研究後,學界發現這是由大約三十個細心配置的鑲齒排列而成的儀器,用來預測太陽、月球、行星在任何一天的方位。

安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。圖/wikipedia

製造者想必不知道太陽系的配置,因為這個儀器的設計是以地球為中心的模型為基礎,可是它對位置預測的準確度卻讓人驚訝。過去從來沒發現過類似的儀器;本質上而言,這是目前已知最古老的科學計算機。

至於星星本身的運動,在古代來說,是無法在某人的有生之年內測量出來的。古人很精細地測量了太陽在天空中的位置,所以能確定像是冬至、夏至這樣的至點以及春分、秋分的二分點時間。二分點出現在太陽通過天球赤道的時候,而有非常多的古代天文學家都會觀測太陽在天空中的位置。

-----廣告,請繼續往下閱讀-----

地球自轉的歲差怎麼算?

西元前二世紀的希臘天文學家希巴克斯(Hipparchus)指出,和前人觀測到的結果相比,太陽在二分點的位置出現了相對性的改變,這個發現被稱為「分點歲差」。現在我們知道這是因為地軸相對於星星的移動所造成的,而這個發現成為了精密天文學的轉捩點。歐洲太空總署(ESA)的衛星伊巴谷(Hipparcos)就是利用這位天文學家姓名的發音,但是字母的拼法不同,因為其實這是「高度精密視差測量衛星」的縮寫。

伊巴谷是最早踏出第一步,排除地球是所有運動的中心的人。他觀察到太陽在全年中移動的速度會變化,而且計算出太陽中心的運動,一定會輕微地偏離地球。大約兩千年後,科學家才真的拋棄成見,推翻地球中心論,建立出地球以橢圓形軌道環繞太陽轉動的理論。

地球中心說。圖/wikipedia

巴比倫人和希臘人都是最早在天文學上跨出一大步的民族,他們會測量太陽、月球和行星的移動。兩千多年後,哥白尼、第谷,還有克卜勒才又往前邁了一大步,拋棄地球是宇宙中心的理論。我(諾斯)認為,我們現在即將跨出在天文學與宇宙學方面重大的第三步,開始了解宇宙的真實規模。

英國最適合看極光的地方是哪裡?

唯一一個算得上看得清楚的地方是蘇格蘭。一旦越過北方的邊界,極光就沒那麼少見了,不過也沒有像挪威北部或阿拉斯加那麼頻繁。重點是要到一個真的很暗的地方,而蘇格蘭有些地方還能滿足這個條件。

-----廣告,請繼續往下閱讀-----

所以定期觀測是值得的,不過也得準備好可能要等好一段時間。如果你去到挪威北部像是特浪索這樣的地方,那麼你在一整年裡,除了永晝的日子以外,幾乎每個晚上都能看到極光。

在《仰望夜空》播出的期間裡,天空有些什麼改變?夜空中有沒有新的天體出現,或者有沒有星星或其他天體的位置、外觀發生了改變?

很顯然,就算是在比《仰望夜空》節目播出時間更長的期間裡,星星和行星都不會改變。我們的確有看到幾顆彗星,一、兩顆明亮的新星。除此之外,情況都沒什麼改變。

我在主持《仰望夜空》的期間看過最壯觀的景象,應該是海爾波普彗星,那真的很壯麗,而且有超過一年的時間都能用肉眼看到它。我想當它離開我們時,我們都很傷心。別難過,它四千年後還會回來!

當然有些行星總是在改變,尤其是木星和土星。木星的雲帶在過去幾年中一直出現強烈的變動,而土星上則發生了劇烈的風暴。相當值得持續關注。

-----廣告,請繼續往下閱讀-----
圖/wikipedia

未來的觀星者會看到如我們現在所看到的北斗七星、獵戶座腰帶、老鷹星雲等這些星星的排列嗎?

根據我們目前的預測,未來不會有可偵測到的改變,但是當然如果是一萬年或是更久之後,這些星座一定會有改變。舉例來說,大熊座會扭曲,因為它的兩顆星(瑤光與天樞)在太空中是以與其他五顆相反的方向移動,遠離對方的。但是這些星星在太空中的移動實在太慢了,所以很難用肉眼看出來。

提醒你,一百萬年之後再回來,天空就會變得很不一樣。隨著時間過去,星座會因為星星的移動而變形,新的排列也會變得明顯。就連星雲也會隨著它們的中心出現氣體與塵埃生成的星星而改變,不過這個過程會需要幾百萬年的時間。

如果我們可以把時間快轉十億年,那時候的天空會是什麼樣子?會有多少星星不再存在?

如果快轉那麼長的時間,所有星座都會有非常大的改變,到時候我們已經認不出來那片天空了。除此之外,我們也無法辨識一些我們熟悉的星星,例如獵戶座的參宿七,到了那時候一定已經經歷了紅巨星的階段,也許在超新星的爆炸中死去。同樣的事也會發生在我們鄰近星系中的很多大質量的恆星上,不過也會有更多的恆星在天空中的其他位置出現。

如果把太陽系從銀河中拔出來,然後完整地放在太空中另外一個空曠的區域,我們會變好還是變糟?

這個嘛,我們會悲慘很多,因為我們只能看到自己太陽系的天體,對於星星會一無所知。事實上,我們的知識會被局限在很小的範圍內,有點像是去倫敦但只參觀維多利亞車站而已。一定要記得,天文學是最古老的科學之一,是古代文明不斷地重寫,增進我們對宇宙的了解的成果。

-----廣告,請繼續往下閱讀-----

——本文摘自《關於夜空的 362 個問題:從天文觀測、太陽系的組成到宇宙的奧祕,了解天文學的入門書》,2019 年 4 月,貓頭鷹出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1266 篇文章 ・ 2625 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
4

文字

分享

0
7
4
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

2
0

文字

分享

0
2
0
「哈佛最優秀的人」卻被迫低頭:塞西莉亞·佩恩未被承認的天文革命——《你的身體怎麼來的?》
商周出版_96
・2025/01/20 ・4176字 ・閱讀時間約 8 分鐘

世人接受新觀念分為三個階段:

  A. 胡說八道

  B. 早就有人想過了

  C. 我們一直都是這樣想

-----廣告,請繼續往下閱讀-----

──佛萊德.霍伊爾,轉述雷蒙.利托頓(Raymond Lyttleton)說法

滿懷熱情的劍橋叛逆者:佩恩如何走上科學之路

一九二三年春天,二十一歲、身材高䠷的劍橋大學學生塞西莉亞.佩恩(Cecilia Payne)開始對未來感到惶恐。她熱愛天文學研究,夢想能走上研究道路,長期筆記自己成為科學家之後想研究的課題。但在校最後一年,她意識到面前可能是個死胡同。

那時代的英國,如她這般具備聰明才智的女性充其量只是當上女子學校的教師或校長。「彷彿腳下裂開一條深淵,」後來佩恩在自傳這樣比喻:「對我而言,當女教師是『比死亡還糟糕的命運』。」所幸悲慘命運沒有降臨在她身上,儘管面臨種種困難,佩恩仍舊在科學上做出突破,為二十世紀科學的轉捩點奠定基礎:她發現人體所有元素(除了氫)最初如何形成。

佩恩對科學的興趣萌芽於六歲,那年一顆流星給她留下深刻印象。十歲時,她在天主教學校做實驗測試禱告的力量,為一半考試的成績祈禱、另一半則不做祈禱。事後發現成績沒有差別時,她轉而肯定理性的力量,對科學的興趣於此扎根。至於宗教,佩恩後來相信一位論14

-----廣告,請繼續往下閱讀-----

虔誠女校長對佩恩說學習科學是「糟蹋她的天賦」。學校合唱團指揮古斯塔夫.霍爾斯特(Gustav Holst)雖然當時默默無聞但之後會創作《行星組曲》,他則鼓勵佩恩走音樂這條路。

但佩恩有自己的想法:她拿到劍橋大學獎學金,準備攻讀植物學。然而適逢第一次世界大戰之後物理學風起雲湧的時期,佩恩正好聽了天文學家亞瑟.愛丁頓那場劃時代講座,得知太陽引力場能夠扭曲光線路徑,而且一切符合愛因斯坦的預測。佩恩大受震撼,人生再次拐了個彎。她後來寫道:「我的世界天旋地轉,感覺差點神經休克。」那瞬間她徹底愛上物理學,所以隔天就去「面對校方」,申請從植物學系轉到物理學系。回家以後她幾乎逐字逐句默寫講座內容,為此三天沒怎麼睡。

天文學家亞瑟.愛丁頓的講座改變了佩恩的志向,讓她的人生轉了彎。圖 / unsplash

劍橋卡文迪什實驗室的氣氛像是帶著電。發現電子的湯木生、發明雲室的威爾遜都在這裡,但最耀眼的常駐明星是發現原子核的傳奇人物拉塞福。對佩恩來說美中不足的是拉塞福不喜歡課堂有女性參與。儘管當時年輕女性不再需要年長者時時監護,但仍要求座位與男性分開。因此每次進入講堂,佩恩作為唯一女性必須單獨坐在最前排,而拉塞福更是刻意每堂課都以「各位女士先生」這句話開場。佩恩在自傳中回憶:「男生聽到教授意有所指總是很捧場,歡聲雷動之外還會老派地跺腳,每次上課我都想挖個洞鑽進去。」[38]

星星的祕密:她用光譜解開宇宙的指紋

她很快投靠愛丁頓。愛丁頓理解她的熱忱,也比拉塞福更加包容,允許她參與研究團隊。同時佩恩還接觸到最新領域量子物理學,帶她入門的正是理論發現者之一尼爾斯.波耳(Niels Bohr)。即便如此,在學最後一年她又發現面前是死路,因為劍橋大學根本不允許女性獲得高等學位。(不授予文憑,也無法獲邀參加畢業典禮。)險阻重重,但她堅持不懈、動用一些關係,終於爭取到哈佛天文臺的女性研究員資格,能在臺長哈洛.沙普利指導下工作。

-----廣告,請繼續往下閱讀-----

天文臺位於麻薩諸塞州劍橋市距離校園大約一英里的小山上,特點是願意僱用女性,因為前任臺長愛德華.皮克林(Edward Pickering)發現她們除了勤奮聰明還能大幅降低預算壓力。在一次史無前例的星體清點作業中,皮克林僱用超過八十位女性處理大量圖片,最終數量高達五十萬份。有些人將這群女性稱為「皮克林的計算機」,但更常見的諢名是「皮克林的後宮」。

一開始沙普利也期望佩恩幫忙利用照片來對星體進行分類和編目,但她才第一個獨立研究就急於解決劍橋教授提出的大哉問。當時人類對宇宙的理解有個顯而易見的盲點:星星是由什麼構成的?

當時的人們還不知道,星星是由什麼構成的。圖 / unsplash

科學家已經掌握部分答案。除了拍攝恆星,哈佛天文學家還會記錄玻璃底片上的光譜。光譜提供線索,可以判斷星星含有何種元素。星體發出的光包含各種顏色,但元素周期表中每個元素會吸收一組特定波長。換句話說,飄浮在星體大氣層的元素原子會在星光到達地球前吸收特定波長的光。天文學家觀察星體光譜的水平面會發現波長缺失部分出現細黑線,從這些黑線就能推測出光線被什麼元素吸收了。可以說感光玻璃板留下了指紋光譜、宇宙條碼,結論是星星含有許多地球上能找到的元素,例如鐵、氧、矽、氫。

隨之而來的問題是光譜模式有異常,想要詮釋並不容易。儘管玻璃底片能告訴科學家星星包含什麼元素,卻無法有效判斷各元素的份量。

-----廣告,請繼續往下閱讀-----

星星的祕密:她用光譜解開宇宙的指紋

儘管如此,天文學家卻認為自己已經知道答案是恆星和行星必定由相同物質構成。當時許多人認為行星是另一顆恆星經過時從太陽拉出大團熱氣體之後凝固而成,因此地球與太陽必然成分相近。就連恆星研究龍頭亨利.諾里斯.羅素也信心滿滿,他相信太陽就像地球有個巨大鐵核心,如果將地球地殼加熱到太陽的溫度就會散發出幾乎一模一樣的光譜。

這正是佩恩想研究的問題。她意圖藉由底片確認恆星中各種元素的比例,並提議採納最新的前沿理論:遠在加爾各答的傑出天體物理學家梅納德.薩哈(Meghnad Saha)指出新的量子力學理論中,電子只能在特定軌道圍繞原子核旋轉,能量越高就必須離原子核越遠。據此出發,薩哈認為恆星溫度各有不同,即使原子是相同元素,其中電子也很可能處於不同路徑(若是最高溫的恆星,原子還可能直接失去電子)。這些變化導致相同原子會吸收光線中的不同波長組合,混淆人類對星星光譜的理解。

工程浩大,但佩恩不畏挑戰,將薩哈方程式應用於哈佛的龐大底片館藏。哈佛天文臺也只有她具備足夠的量子理論知識能完成這項工作。[40]

佩恩辦公室位於紅磚大樓三樓,裡頭堆滿了底片。她不舍晝夜努力分析,數萬筆恆星光譜看得人眼花繚亂。底片至今仍保存在同一棟大樓,只是外面護膜泛黃了。曾經接受佩恩指導的天文學家歐文.金杰里奇(Owen Gingerich)拿了一張給我看過,上面的黑色帶狀紋路每條約四分之一英寸寬(約零點六公分),裡頭交織亮度不一的模糊細線,必須拿放大鏡才能判讀。「單純這樣看想必一頭霧水,」金杰里奇解釋:「但其實有一套辨識的系統,只要日復一日觀察就能跟它們變成朋友。」我盯著那些線條直呼不可思議。

-----廣告,請繼續往下閱讀-----

天文臺臺長沙普利偶爾在夜裡經過那間辦公室,發現佩恩邊抽菸邊端詳底片,絞盡腦汁在模糊線條裡辨認出模式、與計算結果做對照。她自己也寫下:「我日以繼夜研究,時常處在疲憊崩潰的邊緣。」研究計畫從幾個月延長到將近一年,期間只能以「霧裡看花」形容,但皇天不負苦心人,佩恩運用薩哈方程式之後得到出乎意料的結果。

論文初稿中她大膽宣稱:儘管大家相信恆星與地球成分應該相同,但事實並非如此。恆星中幾乎沒有地球上最常見的元素如鐵、矽、氧、鋁。反之,每顆恆星有百分之九十八是氫和氦,而且太陽的氫比地球多一百萬倍。

太奇怪了,與她在劍橋所學不符,也與老師們對地球形成的理解不一致。「佩恩小姐?你很勇敢」,物理學家艾爾弗雷德.福勒(Alfred Fowler)這樣對她說。沙普利臺長很得意地將佩恩的論文草稿寄給自己以前的指導教授、普林斯頓大學著名天文學家亨利.諾里斯.羅素。

哈佛大學最優秀的人也被迫低頭

羅素回信以高度讚揚夾帶了強烈警語:他認為佩恩的主張,也就是星星幾乎完全由氫和氦組成,「顯然是不可能的」。否定這種說法的理由很充分,其中之一在於他們為何認為太陽中含有大量的鐵。太陽光譜中代表鐵的線條比其他元素更多,而且許多隕石也由鐵構成、地球的核心同樣充滿鐵。在羅素看來,種種現象指向任何天體都含有大量的鐵。

-----廣告,請繼續往下閱讀-----

一邊是研究所學生,另一邊在學界已經聲譽卓著,佩恩自然接受了對方觀點,或者應該說她感覺自己不得不從,回憶時提到:「年輕科學家有沒有前途就看對方一句話。」於是她在論文加上一句前提,表示這部分結論「幾乎肯定不真實」。據佩恩的女兒告訴作家唐納文.摩爾(Donovan Moore),她一生都為這個決定感到遺憾,因為不出幾年量子理論進步了、其他人也透過其他方法得出同樣結論,羅素又回頭肯定了佩恩的發現。

後來很長一段時間裡,大家認為她寫出了天文學史上最傑出的博士論文。著名天文學家愛德溫.哈伯稱她為「哈佛大學最優秀的人(man)」。即便如此,佩恩在哈佛大學內部升遷卻花了很長時間,講座有非常多年沒被列入哈佛的課程目錄。原因出在校長勞倫斯.羅威爾(Lawrence Lowell)強烈排斥女性進入教職一事,還發誓有生之年絕不錄用,所以拖到一九五六年,羅威爾去世非常久以後,佩恩才終於當上教授。

她的發現改變人類對恆星運作的理解。確定恆星主要由氫和氦組成,研究人員得以解決另一個長期未解的謎團:星星以什麼作為燃料?他們發現恆星內部壓力極大,單質子的氫原子融合形成雙質子的氦原子時會釋放能量,太陽就以這種方式產生光和熱。也由於佩恩的貢獻與對恆星的新知識,學界終於有機會揭開重元素誕生的祕密,答案就在星星裡。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。