0

0
0

文字

分享

0
0
0

古人是怎麼觀測天體的?過去和未來的天空會長的一樣嗎?——《關於夜空的 362 個問題》

PanSci_96
・2019/07/23 ・3119字 ・閱讀時間約 6 分鐘 ・SR值 511 ・六年級

編按:本文摘自《關於夜空的 362 個問題》,蒐集了英國最長壽科普節目《仰望星空》的觀眾提問。所有你對太空宇宙會有的疑問,都將在本書中為你解答。本節討論的是「過去和未來的天空」。

 

古文明如何準確測量星星的運動?

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。圖/pxhere

巴比倫人和蘇美人是世界上最古老的天文學家,他們在三千多年前居住於現在的阿拉伯地區。

太陽、月球和星星的移動,在古代就已經為人所知,此外黃道帶上的那些星座也是最早被發現的。當時的人可能已經知道,在不同的時間會看到不同的星星排列,但他們應該還不知道這是為什麼。這些文明是最早注意到天象變化的文明。他們可能注意到有些行星好像會在星星之間移動,特別是最亮的那顆:金星。當時也已經知道在夜晚或早上都看得到金星,蘇美人還發現了它的周期性。當然,他們並沒有因此思考到其他行星,而是聯想到神祇的活動。

巴比倫人知道各種不同的周期,主宰月相改變的周期就是其一;不過更重要的是日食和月食的周期。這些周期也流傳下來,到了在天文學方面非常有條理、邏輯的古希臘人手中。最令人震撼的天文事件自然是日食與月食。

-----廣告,請繼續往下閱讀-----
最令人震撼的天文事件自然是日食與月食。圖/pexels

事實上,許多古代文明都對這種現象感到害怕。雖然因為太陽與月球在天空中的運動方式不同,日月食發生的時間間隔似乎並不規律,但其實大約是每十八年發生一次。這段時間被稱為沙羅周期,是太陽、地球、月球三者形成的幾何系統回到相同配置的時間。再加上地球的自轉,就必須使用三個沙羅周期來計算,所以是大約五十四年發生一次。這表示,如果你觀察到一次日食或月食,那麼在一萬九千七百五十六天(或是五十四年又一個月)之後,在地球上同一個地點就能再看到一次幾乎一模一樣的日食或月食。

古代天文學留下令人著迷的遺產之一,就是安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。銅製的安提基瑟拉儀是一九○○年在希臘的安提基瑟拉島發現的,經過深入研究後,學界發現這是由大約三十個細心配置的鑲齒排列而成的儀器,用來預測太陽、月球、行星在任何一天的方位。

安提基瑟拉儀,大約是西元前一世紀或二世紀左右建造的。圖/wikipedia

製造者想必不知道太陽系的配置,因為這個儀器的設計是以地球為中心的模型為基礎,可是它對位置預測的準確度卻讓人驚訝。過去從來沒發現過類似的儀器;本質上而言,這是目前已知最古老的科學計算機。

至於星星本身的運動,在古代來說,是無法在某人的有生之年內測量出來的。古人很精細地測量了太陽在天空中的位置,所以能確定像是冬至、夏至這樣的至點以及春分、秋分的二分點時間。二分點出現在太陽通過天球赤道的時候,而有非常多的古代天文學家都會觀測太陽在天空中的位置。

-----廣告,請繼續往下閱讀-----

地球自轉的歲差怎麼算?

西元前二世紀的希臘天文學家希巴克斯(Hipparchus)指出,和前人觀測到的結果相比,太陽在二分點的位置出現了相對性的改變,這個發現被稱為「分點歲差」。現在我們知道這是因為地軸相對於星星的移動所造成的,而這個發現成為了精密天文學的轉捩點。歐洲太空總署(ESA)的衛星伊巴谷(Hipparcos)就是利用這位天文學家姓名的發音,但是字母的拼法不同,因為其實這是「高度精密視差測量衛星」的縮寫。

伊巴谷是最早踏出第一步,排除地球是所有運動的中心的人。他觀察到太陽在全年中移動的速度會變化,而且計算出太陽中心的運動,一定會輕微地偏離地球。大約兩千年後,科學家才真的拋棄成見,推翻地球中心論,建立出地球以橢圓形軌道環繞太陽轉動的理論。

地球中心說。圖/wikipedia

巴比倫人和希臘人都是最早在天文學上跨出一大步的民族,他們會測量太陽、月球和行星的移動。兩千多年後,哥白尼、第谷,還有克卜勒才又往前邁了一大步,拋棄地球是宇宙中心的理論。我(諾斯)認為,我們現在即將跨出在天文學與宇宙學方面重大的第三步,開始了解宇宙的真實規模。

英國最適合看極光的地方是哪裡?

唯一一個算得上看得清楚的地方是蘇格蘭。一旦越過北方的邊界,極光就沒那麼少見了,不過也沒有像挪威北部或阿拉斯加那麼頻繁。重點是要到一個真的很暗的地方,而蘇格蘭有些地方還能滿足這個條件。

-----廣告,請繼續往下閱讀-----

所以定期觀測是值得的,不過也得準備好可能要等好一段時間。如果你去到挪威北部像是特浪索這樣的地方,那麼你在一整年裡,除了永晝的日子以外,幾乎每個晚上都能看到極光。

在《仰望夜空》播出的期間裡,天空有些什麼改變?夜空中有沒有新的天體出現,或者有沒有星星或其他天體的位置、外觀發生了改變?

很顯然,就算是在比《仰望夜空》節目播出時間更長的期間裡,星星和行星都不會改變。我們的確有看到幾顆彗星,一、兩顆明亮的新星。除此之外,情況都沒什麼改變。

我在主持《仰望夜空》的期間看過最壯觀的景象,應該是海爾波普彗星,那真的很壯麗,而且有超過一年的時間都能用肉眼看到它。我想當它離開我們時,我們都很傷心。別難過,它四千年後還會回來!

當然有些行星總是在改變,尤其是木星和土星。木星的雲帶在過去幾年中一直出現強烈的變動,而土星上則發生了劇烈的風暴。相當值得持續關注。

-----廣告,請繼續往下閱讀-----
圖/wikipedia

未來的觀星者會看到如我們現在所看到的北斗七星、獵戶座腰帶、老鷹星雲等這些星星的排列嗎?

根據我們目前的預測,未來不會有可偵測到的改變,但是當然如果是一萬年或是更久之後,這些星座一定會有改變。舉例來說,大熊座會扭曲,因為它的兩顆星(瑤光與天樞)在太空中是以與其他五顆相反的方向移動,遠離對方的。但是這些星星在太空中的移動實在太慢了,所以很難用肉眼看出來。

提醒你,一百萬年之後再回來,天空就會變得很不一樣。隨著時間過去,星座會因為星星的移動而變形,新的排列也會變得明顯。就連星雲也會隨著它們的中心出現氣體與塵埃生成的星星而改變,不過這個過程會需要幾百萬年的時間。

如果我們可以把時間快轉十億年,那時候的天空會是什麼樣子?會有多少星星不再存在?

如果快轉那麼長的時間,所有星座都會有非常大的改變,到時候我們已經認不出來那片天空了。除此之外,我們也無法辨識一些我們熟悉的星星,例如獵戶座的參宿七,到了那時候一定已經經歷了紅巨星的階段,也許在超新星的爆炸中死去。同樣的事也會發生在我們鄰近星系中的很多大質量的恆星上,不過也會有更多的恆星在天空中的其他位置出現。

如果把太陽系從銀河中拔出來,然後完整地放在太空中另外一個空曠的區域,我們會變好還是變糟?

這個嘛,我們會悲慘很多,因為我們只能看到自己太陽系的天體,對於星星會一無所知。事實上,我們的知識會被局限在很小的範圍內,有點像是去倫敦但只參觀維多利亞車站而已。一定要記得,天文學是最古老的科學之一,是古代文明不斷地重寫,增進我們對宇宙的了解的成果。

-----廣告,請繼續往下閱讀-----

——本文摘自《關於夜空的 362 個問題:從天文觀測、太陽系的組成到宇宙的奧祕,了解天文學的入門書》,2019 年 4 月,貓頭鷹出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
2

文字

分享

0
7
2
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

2
0

文字

分享

0
2
0
「哈佛最優秀的人」卻被迫低頭:塞西莉亞·佩恩未被承認的天文革命——《你的身體怎麼來的?》
商周出版_96
・2025/01/20 ・4176字 ・閱讀時間約 8 分鐘

世人接受新觀念分為三個階段:

  A. 胡說八道

  B. 早就有人想過了

  C. 我們一直都是這樣想

-----廣告,請繼續往下閱讀-----

──佛萊德.霍伊爾,轉述雷蒙.利托頓(Raymond Lyttleton)說法

滿懷熱情的劍橋叛逆者:佩恩如何走上科學之路

一九二三年春天,二十一歲、身材高䠷的劍橋大學學生塞西莉亞.佩恩(Cecilia Payne)開始對未來感到惶恐。她熱愛天文學研究,夢想能走上研究道路,長期筆記自己成為科學家之後想研究的課題。但在校最後一年,她意識到面前可能是個死胡同。

那時代的英國,如她這般具備聰明才智的女性充其量只是當上女子學校的教師或校長。「彷彿腳下裂開一條深淵,」後來佩恩在自傳這樣比喻:「對我而言,當女教師是『比死亡還糟糕的命運』。」所幸悲慘命運沒有降臨在她身上,儘管面臨種種困難,佩恩仍舊在科學上做出突破,為二十世紀科學的轉捩點奠定基礎:她發現人體所有元素(除了氫)最初如何形成。

佩恩對科學的興趣萌芽於六歲,那年一顆流星給她留下深刻印象。十歲時,她在天主教學校做實驗測試禱告的力量,為一半考試的成績祈禱、另一半則不做祈禱。事後發現成績沒有差別時,她轉而肯定理性的力量,對科學的興趣於此扎根。至於宗教,佩恩後來相信一位論14

-----廣告,請繼續往下閱讀-----

虔誠女校長對佩恩說學習科學是「糟蹋她的天賦」。學校合唱團指揮古斯塔夫.霍爾斯特(Gustav Holst)雖然當時默默無聞但之後會創作《行星組曲》,他則鼓勵佩恩走音樂這條路。

但佩恩有自己的想法:她拿到劍橋大學獎學金,準備攻讀植物學。然而適逢第一次世界大戰之後物理學風起雲湧的時期,佩恩正好聽了天文學家亞瑟.愛丁頓那場劃時代講座,得知太陽引力場能夠扭曲光線路徑,而且一切符合愛因斯坦的預測。佩恩大受震撼,人生再次拐了個彎。她後來寫道:「我的世界天旋地轉,感覺差點神經休克。」那瞬間她徹底愛上物理學,所以隔天就去「面對校方」,申請從植物學系轉到物理學系。回家以後她幾乎逐字逐句默寫講座內容,為此三天沒怎麼睡。

天文學家亞瑟.愛丁頓的講座改變了佩恩的志向,讓她的人生轉了彎。圖 / unsplash

劍橋卡文迪什實驗室的氣氛像是帶著電。發現電子的湯木生、發明雲室的威爾遜都在這裡,但最耀眼的常駐明星是發現原子核的傳奇人物拉塞福。對佩恩來說美中不足的是拉塞福不喜歡課堂有女性參與。儘管當時年輕女性不再需要年長者時時監護,但仍要求座位與男性分開。因此每次進入講堂,佩恩作為唯一女性必須單獨坐在最前排,而拉塞福更是刻意每堂課都以「各位女士先生」這句話開場。佩恩在自傳中回憶:「男生聽到教授意有所指總是很捧場,歡聲雷動之外還會老派地跺腳,每次上課我都想挖個洞鑽進去。」[38]

星星的祕密:她用光譜解開宇宙的指紋

她很快投靠愛丁頓。愛丁頓理解她的熱忱,也比拉塞福更加包容,允許她參與研究團隊。同時佩恩還接觸到最新領域量子物理學,帶她入門的正是理論發現者之一尼爾斯.波耳(Niels Bohr)。即便如此,在學最後一年她又發現面前是死路,因為劍橋大學根本不允許女性獲得高等學位。(不授予文憑,也無法獲邀參加畢業典禮。)險阻重重,但她堅持不懈、動用一些關係,終於爭取到哈佛天文臺的女性研究員資格,能在臺長哈洛.沙普利指導下工作。

-----廣告,請繼續往下閱讀-----

天文臺位於麻薩諸塞州劍橋市距離校園大約一英里的小山上,特點是願意僱用女性,因為前任臺長愛德華.皮克林(Edward Pickering)發現她們除了勤奮聰明還能大幅降低預算壓力。在一次史無前例的星體清點作業中,皮克林僱用超過八十位女性處理大量圖片,最終數量高達五十萬份。有些人將這群女性稱為「皮克林的計算機」,但更常見的諢名是「皮克林的後宮」。

一開始沙普利也期望佩恩幫忙利用照片來對星體進行分類和編目,但她才第一個獨立研究就急於解決劍橋教授提出的大哉問。當時人類對宇宙的理解有個顯而易見的盲點:星星是由什麼構成的?

當時的人們還不知道,星星是由什麼構成的。圖 / unsplash

科學家已經掌握部分答案。除了拍攝恆星,哈佛天文學家還會記錄玻璃底片上的光譜。光譜提供線索,可以判斷星星含有何種元素。星體發出的光包含各種顏色,但元素周期表中每個元素會吸收一組特定波長。換句話說,飄浮在星體大氣層的元素原子會在星光到達地球前吸收特定波長的光。天文學家觀察星體光譜的水平面會發現波長缺失部分出現細黑線,從這些黑線就能推測出光線被什麼元素吸收了。可以說感光玻璃板留下了指紋光譜、宇宙條碼,結論是星星含有許多地球上能找到的元素,例如鐵、氧、矽、氫。

隨之而來的問題是光譜模式有異常,想要詮釋並不容易。儘管玻璃底片能告訴科學家星星包含什麼元素,卻無法有效判斷各元素的份量。

-----廣告,請繼續往下閱讀-----

星星的祕密:她用光譜解開宇宙的指紋

儘管如此,天文學家卻認為自己已經知道答案是恆星和行星必定由相同物質構成。當時許多人認為行星是另一顆恆星經過時從太陽拉出大團熱氣體之後凝固而成,因此地球與太陽必然成分相近。就連恆星研究龍頭亨利.諾里斯.羅素也信心滿滿,他相信太陽就像地球有個巨大鐵核心,如果將地球地殼加熱到太陽的溫度就會散發出幾乎一模一樣的光譜。

這正是佩恩想研究的問題。她意圖藉由底片確認恆星中各種元素的比例,並提議採納最新的前沿理論:遠在加爾各答的傑出天體物理學家梅納德.薩哈(Meghnad Saha)指出新的量子力學理論中,電子只能在特定軌道圍繞原子核旋轉,能量越高就必須離原子核越遠。據此出發,薩哈認為恆星溫度各有不同,即使原子是相同元素,其中電子也很可能處於不同路徑(若是最高溫的恆星,原子還可能直接失去電子)。這些變化導致相同原子會吸收光線中的不同波長組合,混淆人類對星星光譜的理解。

工程浩大,但佩恩不畏挑戰,將薩哈方程式應用於哈佛的龐大底片館藏。哈佛天文臺也只有她具備足夠的量子理論知識能完成這項工作。[40]

佩恩辦公室位於紅磚大樓三樓,裡頭堆滿了底片。她不舍晝夜努力分析,數萬筆恆星光譜看得人眼花繚亂。底片至今仍保存在同一棟大樓,只是外面護膜泛黃了。曾經接受佩恩指導的天文學家歐文.金杰里奇(Owen Gingerich)拿了一張給我看過,上面的黑色帶狀紋路每條約四分之一英寸寬(約零點六公分),裡頭交織亮度不一的模糊細線,必須拿放大鏡才能判讀。「單純這樣看想必一頭霧水,」金杰里奇解釋:「但其實有一套辨識的系統,只要日復一日觀察就能跟它們變成朋友。」我盯著那些線條直呼不可思議。

-----廣告,請繼續往下閱讀-----

天文臺臺長沙普利偶爾在夜裡經過那間辦公室,發現佩恩邊抽菸邊端詳底片,絞盡腦汁在模糊線條裡辨認出模式、與計算結果做對照。她自己也寫下:「我日以繼夜研究,時常處在疲憊崩潰的邊緣。」研究計畫從幾個月延長到將近一年,期間只能以「霧裡看花」形容,但皇天不負苦心人,佩恩運用薩哈方程式之後得到出乎意料的結果。

論文初稿中她大膽宣稱:儘管大家相信恆星與地球成分應該相同,但事實並非如此。恆星中幾乎沒有地球上最常見的元素如鐵、矽、氧、鋁。反之,每顆恆星有百分之九十八是氫和氦,而且太陽的氫比地球多一百萬倍。

太奇怪了,與她在劍橋所學不符,也與老師們對地球形成的理解不一致。「佩恩小姐?你很勇敢」,物理學家艾爾弗雷德.福勒(Alfred Fowler)這樣對她說。沙普利臺長很得意地將佩恩的論文草稿寄給自己以前的指導教授、普林斯頓大學著名天文學家亨利.諾里斯.羅素。

哈佛大學最優秀的人也被迫低頭

羅素回信以高度讚揚夾帶了強烈警語:他認為佩恩的主張,也就是星星幾乎完全由氫和氦組成,「顯然是不可能的」。否定這種說法的理由很充分,其中之一在於他們為何認為太陽中含有大量的鐵。太陽光譜中代表鐵的線條比其他元素更多,而且許多隕石也由鐵構成、地球的核心同樣充滿鐵。在羅素看來,種種現象指向任何天體都含有大量的鐵。

-----廣告,請繼續往下閱讀-----

一邊是研究所學生,另一邊在學界已經聲譽卓著,佩恩自然接受了對方觀點,或者應該說她感覺自己不得不從,回憶時提到:「年輕科學家有沒有前途就看對方一句話。」於是她在論文加上一句前提,表示這部分結論「幾乎肯定不真實」。據佩恩的女兒告訴作家唐納文.摩爾(Donovan Moore),她一生都為這個決定感到遺憾,因為不出幾年量子理論進步了、其他人也透過其他方法得出同樣結論,羅素又回頭肯定了佩恩的發現。

後來很長一段時間裡,大家認為她寫出了天文學史上最傑出的博士論文。著名天文學家愛德溫.哈伯稱她為「哈佛大學最優秀的人(man)」。即便如此,佩恩在哈佛大學內部升遷卻花了很長時間,講座有非常多年沒被列入哈佛的課程目錄。原因出在校長勞倫斯.羅威爾(Lawrence Lowell)強烈排斥女性進入教職一事,還發誓有生之年絕不錄用,所以拖到一九五六年,羅威爾去世非常久以後,佩恩才終於當上教授。

她的發現改變人類對恆星運作的理解。確定恆星主要由氫和氦組成,研究人員得以解決另一個長期未解的謎團:星星以什麼作為燃料?他們發現恆星內部壓力極大,單質子的氫原子融合形成雙質子的氦原子時會釋放能量,太陽就以這種方式產生光和熱。也由於佩恩的貢獻與對恆星的新知識,學界終於有機會揭開重元素誕生的祕密,答案就在星星裡。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。