Loading [MathJax]/extensions/MathZoom.js

0

0
0

文字

分享

0
0
0

亞述帝國(Assyrian Empire)的衰落與氣候變遷的關係

葉綠舒
・2014/11/27 ・1969字 ・閱讀時間約 4 分鐘 ・SR值 549 ・八年級

最近由加州大學聖地牙哥分校的施奈德(Adam Schneider,University of California-San Diego),以及土耳其的安那托利亞文明研究中心的阿達利(Selim Adalı,Research Center for Anatolian Civilizations in Turkey)在《氣候變遷》期刊(Climatic Change)上發表的論文顯示,曾經顯赫一時的古亞述帝國(Assyrian Empire,公元前911年至609年)的衰落可能不僅僅是內戰和政治動盪。考古、歷史和古氣候證據表明,氣候因素和人口的增長可能也軋了一角。

在公元前9世紀時,位於伊拉克北部的亞述帝國開始不停地擴大到大部分的近東區域。它在公元前7世紀早期達到高峰,成為那時候在近東最大的帝國。但是,為何亞述帝國在公元前7世紀末時開始快速的崩潰,一直困擾著學者們至今。大部分的學者歸咎於內戰、政治動亂、以及亞述首都尼尼微(Nineveh)在公元前612年時,被巴比倫與米底王國聯盟攻陷,造成辛沙里施昆(Sinsharishkun)身亡(自焚或被殺)等事件。儘管如此,它仍是一個謎,為什麼亞述帝國,當時的軍事強權,如此突然和如此之快速的走向崩潰?

Map_of_Assyria
亞述帝國。深綠色為公元前824年的版圖,淺綠色為824-671BC 之間擴張的版圖。圖片來源:wiki

他們指出,發生在公元前7世紀後期時的嚴重乾旱,與隨之而來發生在敘利亞和伊拉克的暴力騷亂,跟發生在現代敘利亞和伊拉克北部的嚴重乾旱與隨後的政治衝突事件,兩者有驚人的相似之處。以一個全球性的視角來看,他們的結論是,現代社會應該要注意到,當執政者把短期的經濟和政治政策列入優先考慮,而不是支持長期的經濟保障和風險規避之後,會有什麼樣的後果。施奈德和阿達利認為,人口增長和乾旱也是造成亞述帝國滅亡的重大原因。最近公佈的古氣候數據顯示,近東在公元前7世紀後半葉變得更加乾旱。在此期間,該地區也因為強行安置被征服區域的人民的緣故,產生了顯著的人口增長。作者們認為,這個措施大大地減少了國家的承受嚴重乾旱(例如發生在公元前657年)的能力。他們同時指出,在這個乾旱發生後的五年之內,亞述帝國的政治和經濟穩定性變弱了,從而導致了一系列的內戰,對帝國發生了致命的打擊。

筆者在約略閱讀過亞述的歷史後認為,除了人口增長與乾旱之外,當時的薩爾貢王朝(Sargonid dynasty)的征戰不休與揮霍無度,可能也是造成亞述帝國滅亡的另外一隻手。薩爾貢二世的兒子辛那赫裡布(Sennacherib,公元前704-681年,中文聖經中譯作西拿基立),興建了著名的「蓋世無雙皇宮」,其邊長近200米,包括兩座大殿、一幢橢圓形建築物以及一個植物園和一座涼亭,王宮內的浮雕長達3000米,現藏於大英博物館。

-----廣告,請繼續往下閱讀-----

雖然他的繼任者沒有大興土木,但是下一個繼任者亞述巴尼拔(Ashurbanipal,公元前668-627年)卻興建了巨大豪華的亞述巴尼拔王宮,在宮中設置泥版圖書館,該圖書館收集了當時亞述人所知的全世界各地的書籍,藏有無數楔形文字的泥版(約三萬個),內容包括語言、歷史、文學、宗教、醫學及天文等各方面的知識。雖然這些泥版對於後代研究亞述帝國的學者是很珍貴的資料,但筆者想,歷經連年征戰的亞述帝國(從薩爾貢二世到亞述巴尼拔等四位國王,一直都是征戰不休),加上「蓋世無雙皇宮」以及亞述巴尼拔王宮的建設,與發生在辛那赫裡布時代將首都遷到尼尼微的種種事件,亞述帝國的民間應該也是民窮財盡吧!於是,當公元前657年的乾旱事件發生時(不要忘了這時候正是亞述巴尼拔在位,或許他正在建立他的王宮與圖書館呢!),接著會有一連串的動亂,最後導致外族如巴比倫與米底認為有機可趁,於是聯手入侵造成滅亡,其實也不那麼意外了!

AssyrianWarship
亞述戰船,大約在辛那赫裡布時期。圖片來源:wiki

不過,作者認為亞述人的短視,在一定程度上是可以被原諒的。雖然他們專注於短期的經濟或政治目的的操作(強行安置被征服區域的人民),提高了他們受到氣候變化的不利影響的風險;但是,他們對於自然世界是如何運作的認識不夠,技術能力的水平也不足。因此,他們應該無從預測大量遷徙人口可能造成的後果。

反觀現代人,我們有許多歷史資料提供我們借鏡,我們也有相關的知識與技術;這使我們能夠從過去拼湊可能會出現的問題。因此,如果我們選擇不制定促進長期可持續性的政策的話,我們沒有藉口可以原諒自己「裝傻」與「裝無知」的行為。

不過,就像歷史是一再重複的,安納沙西人、馬雅人、復活節島的人、吳哥帝國皆如是,而現在又加上亞述人,只能說當我們披閱一個個的古國王朝時,既心驚於歷史的重複性(類似的事件也發生在中國的唐末),但當我們回頭來看現代社會時,卻發現:雖然我們應該沒有理由來「裝傻」與「裝無知」,但是「裝傻」與「裝無知」的人卻是那麼地多,能不感嘆嗎?

-----廣告,請繼續往下閱讀-----

參考資料:

Springer Science+Business Media. “Population boom, droughts contributed to collapse of ancient Assyrian Empire.” ScienceDaily.(2014)

原刊載於:自然經典選讀-大崩壞

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
末日模擬!從氣候變遷到核戰爭,人類未來將走向哪個結局?
PanSci_96
・2024/11/19 ・1957字 ・閱讀時間約 4 分鐘

科學家模擬的末日場景

隨著二氧化碳排放持續增加,全球的政治局勢日益緊張,世界上各國的承諾屢屢在國際會議中被辜負,戰爭的結束也似乎遙遙無期。警示世界末日的「末日鐘」越來越接近午夜,人類與地球的未來變得越來越悲觀。

這並非一種刻意的悲觀,而是基於氣候變遷和人類衝突升溫的現實。許多人或許和我一樣好奇,末日會不會真的臨近?如果會,那又會是什麼樣的場景?是氣候徹底失控的《明天過後》?還是生態浩劫後的全面沙漠化,需要武力生存的《沙丘》和《瘋狂麥斯》?或者是核戰之後,所有人生存在廢墟中的《異塵餘生》?

我們的未來走向尚未確定,但科學家已經率先模擬了不同的可能結局,讓我們可以一窺未來的模樣。這些模擬告訴我們,如果人類繼續走某些路徑,地球的結局將是如何。至於我們是否能避免這些結果,就得由全體人類共同決定。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

如何模擬出整顆星球的氣候變化?

要模擬整顆星球的大氣變化是一項龐大的任務,至少需要三大要素:理論、資料、和計算資源。

-----廣告,請繼續往下閱讀-----

首先,人類對氣候系統的物理和化學模式需要有足夠的了解,也就是大氣理論必須足夠完備。其次,需要足夠多的資料來模擬整個行星。這些資料包括地球半徑、自轉速度、海洋分布、太陽輻射、大氣成分等等,甚至是地表的狀況與地形。台灣的中央山脈就能影響到西太平洋的颱風走向,進而影響整個東亞的氣候。如果希望盡可能還原地球的真實情況,還需考量海洋的垂直溫度分布、植物分布導致的生物地球化學反應等。

最後,還需要強大的計算資源,也就是超級電腦。由於資料量龐大,每個參數的小誤差都可能引發蝴蝶效應,影響到預測結果。因此,科學家通常會微調各項參數,並對每組參數進行多次計算,這些都需要大量的運算能力。

模擬沙丘中的荒漠星球

科幻小說《沙丘》中的厄拉科斯,經布里斯托大學模擬,揭示未來氣候可能。圖/wikimedia

科幻小說《沙丘》中的厄拉科斯(Arrakis)是一顆完全荒漠化的星球,英國布里斯托大學的亞歷山大·法恩沃斯等人曾對這顆星球進行了模擬。他們使用在研究地球氣候變遷時使用的氣候模型,並結合小說中的設定,如大氣中的二氧化碳濃度和臭氧含量等,模擬了 500 年後的厄拉科斯氣候。

模擬結果顯示,厄拉科斯的赤道和熱帶地區夏季高溫達 45 度,冬季不低於 15 度。而高緯度地區則更為極端,夏季高溫可達 70 度,冬季最低可達 -75 度。由於大氣濕度和雲層的存在,極地反而比赤道更溫暖。此外,儘管小說中描述厄拉科斯幾乎沒有降雨,但模擬顯示高緯度和山區仍會有少量降雨。

-----廣告,請繼續往下閱讀-----

這些結果顯示,科學家不僅愛科幻,也樂於用科學方法來驗證科幻中的設定。這些模擬能讓我們更了解地球的氣候系統,並讓我們警惕荒漠化的危機。

核戰後的世界:核冬天的可怕景象

如果人類全面爆發核戰爭,戰後的世界會是什麼樣子?研究顯示,大規模的核武攻擊將產生大量的輻射塵和煙灰,進入大氣層並遮蔽陽光,導致「核冬天」的到來。

2019 年的一篇研究模擬了美俄之間的全面核戰爭,結果顯示,爆發後的第一年,全球氣溫將大幅下降,北半球的夏季溫度將下降 25 度,冬季氣溫則會降至零下,植物生長期縮短至僅剩 25 天。煙灰遮蔽陽光,導致全球糧食供應崩潰,第二年可能有 50 億人面臨飢餓。

這些模擬結果告訴我們,全面核戰將帶來毀滅性的後果,核冬天將使人類無法正常生活,這是真正的末日場景。

-----廣告,請繼續往下閱讀-----
核戰模擬顯示,氣溫驟降與糧食崩潰將致全球大饑荒。圖/envato

地球的未來會是如何?

地球未來的命運取決於我們今天的選擇。如果我們對氣候變遷置之不理,兩極冰帽將完全融化,海平面上升,許多沿海地區將被淹沒。雖然不至於像《水世界》中那樣極端,但低地區域的居民將面臨嚴重的生存挑戰。

如果人類選擇繼續衝突,甚至爆發毀滅性戰爭,我們的未來將如《瘋狂麥斯》或《異塵餘生》般,生存在廢墟中,面對乾旱、糧食短缺與持續的環境破壞。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
聊八卦可以防止我們被朋友搭便車、詐騙?——《人類文明》
天下文化_96
・2024/06/17 ・1337字 ・閱讀時間約 2 分鐘

間接互惠的要件之一:聊八卦

間接互惠(indirect reciprocity)的概念認為,受益者並不是直接回報給同一位利他的施恩者,而是會把恩惠轉給其他人。A 幫助 B,B 再幫助 C,C 再幫助 D,依此類推。於是,恩惠就能在社群裡傳出去,遲早也能回到 A 身上。種下的因,總有一天能得到最後的果。

而且這還能談到下一個層次:如果有個 Z,在 A 幫助 B 時,親眼見證了這件事,發現 A 是個慷慨的好人,他也會因為想和 A 建立關係,所以願意幫助 A。於是,就算這兩個人無法符合直接互惠所需要的「後會有期」條件,也能因為整個群體的利他行為而受益。樂於助人,自己就更可能得到幫助,至於那些不想幫助別人、只想貪小便宜的人,則是可能遭到懲罰或受到排擠。像這樣的間接互惠,是人類一種格外複雜的合作形式,需要兩項其他動物都辦不到的條件。

第一項條件是,不管互動雙方的行為是慷慨是自私,除了需要有目擊者親眼看到,還必須能把這項寶貴的資訊,分享到整個群體共有的資料池。也就是說,社群成員得愛聊八卦才行。如果大家都能知道某個人不值得信任、總是只接受別人幫助卻都不回報,等到下次這個人又碰上麻煩,社群成員就不會再伸出援手。

英文有句諺語說「騙子發不了財」(cheats never prosper),但不能說完全正確:騙子常常在短時間內還是能得逞,特別是在那些規模比較大、大家彼此比較不認識的社群;只是遲早仍然會東窗事發,讓自己名聲掃地。所以,想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件,而且無論是營火旁、或是茶水間,人類實在是哪裡都能聊。事實上,相較於其他靈長類動物是用理毛之類的活動來建立關係,人類是以閒嗑牙、聊八卦取代了這些活動。

-----廣告,請繼續往下閱讀-----
想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件!圖/envato

像這樣把個別成員的行為,拿來在社群裡大談特談(就像是一個由閒聊建立起的社群網路),就會打造出一套名聲系統,可用來判斷適不適合試著和某個人合作。某人對待他人慷慨大方,就能建立良好的名聲;老愛占別人便宜,也就會惡名遠揚,讓人知道以後可得敬而遠之。行為友善的人,其他人在未來幫助他們的機率也會比較高,於是在天擇的機制裡就能占點上風。所以說到頭來,仍是演化塑造了人類的心理,讓我們在意自己的名聲,聊八卦就成了確保大家別心存僥倖的機制。

在一個會聊八卦的社會裡,生活的第一守則就是要小心自己做的事;或者更重要的是,要小心自己做的事給別人的觀感。於是,人類社會也就成了一個人人都在猜測別人想法的社會——須推斷別人的動機與態度,評估自己的行為在他人眼中的樣貌,好維護自己在外的名聲。我們所謂的「良心」就是這樣的產物之一:內在的這股聲音,警告我們可能有人在看,要我們想想別人可能的觀感,好讓自己免受社會的制裁。

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。