0

0
1

文字

分享

0
0
1

氟鹽奶粉大誤會!氟怎麼變成我們心底恐懼的「那個人」?

Dino
・2016/07/05 ・2602字 ・閱讀時間約 5 分鐘 ・SR值 598 ・九年級

-----廣告,請繼續往下閱讀-----

前陣子引發瘋狂轉發的文章,談到嬰兒奶粉加氟鹽的劑量問題:奶粉加氟鹽讓嬰兒天天吃、餐餐吃,怎麼可能不累積過量毒素?傷腦、傷骨、傷牙、傷神經系統、易引起肌肉骨骼神經毀損與甲狀腺失衡⋯⋯媽媽們若不提高警覺,豈不讓自己的孩子真的輸在起跑點?

然而,這一切真是天大的誤會!釐清其政策背後的用意,食藥署出於讓消費者具備更多選擇權,要求下列商品必須充分列出內容物成分:1. 奶粉;2. 含氟的食鹽。而非如網路謠言所傳,將嬰兒奶粉混合含氟食鹽販售[1-3]

baby-472922_640
媽媽們不用擔心,市面上沒有加氟鹽的嬰兒奶粉。圖/pixabay

相關謠言屢見不鮮且擴散力強的原因 

除了主流媒體頻繁「量產」不經求證的報導,並加以過度渲染以外,讀者即使面對資訊公開、敘述清晰的新聞,仍不免在腦中自行連結,喚起心底深層的恐懼。當恐懼升起,理性判讀的能力自然隨之下降。

恐懼症(phobia)屬於精神官能症精神官能症的一類[4],患者對某些事物或情境會產生莫名的恐懼,並且時常不是建立在「理性」的基礎之上。多數人較為熟悉的恐懼症包括懼高症(Acrophobia)、幽閉恐懼症(Claustrophobia)、恐同症(Homophobia),或是社交恐懼症(Sociophobia)。但隨著媒體反覆播送同一則訊息,單一意外事件儘管事實上只發生了一次,卻容易帶給人們發生十次以上的錯覺,也因此每個閱聽者的心底深處在不知不覺中被置入了《哈利波特》小說裡不能說出口的「那個人」。

-----廣告,請繼續往下閱讀-----
lord_voldemort_by_hermyemma-d5xho3i
我們對於化學製品的恐懼,就像是心底被置入《哈利波特》小說中的「那個人」一樣。

其中近來最為普遍的恐懼症莫過於「化學恐懼症」[5]——對任何「化學製品」的過度恐懼。這類的恐懼主要源自情緒,而非明確的科學證據。風險認知顧問大衛.洛佩克(David Ropeik)提及:「雖然有些人認為凡事寧可謹慎為上,但非理性的恐懼反而會給身體健康帶來負面影響。」

為什麼「化學恐懼症」的渲染力格外強大?

理由很簡單,佛地魔都怕死,一般人當然也怕死。既然下肚的化學製品和我們的身體息息相關,不會有人願意拿自己或自己的孩子當白老鼠,所以民眾自行解讀時事、加以腦補的案例便屢見不鮮了。

洛佩克進一步指出:證據顯示,人類普遍害怕「人造」的東西,偏好「自然」。正因如此,許多人擔心 WiFi 訊號的輻射量,卻願意在沒有塗抹防曬乳的情況下享受日光浴——殊不知,紫外線照射是皮膚癌的重要誘因,而各種實驗都未能證明 WiFi 訊號會對人體構成持續傷害。

氟的爭議持續延燒

回到上述奶粉混合含氟食鹽的一場誤會,其實不全然算是危言聳聽,直到目前為止,關於氟對人體的影響仍未有定論

-----廣告,請繼續往下閱讀-----

2013 年,歐洲食品安全局 (European Food Safety Authority, EFSA)接受歐盟執委會委託,研究氟的安全性並據此制訂攝取量。而根據期研究結果,由於氟並非人體必須物質,因此無法訂出「最適攝取量」,僅能訂出符合人體安全的最低有效劑量 。而 EFSA 的論文說明:

a. 攝取適量含氟飲用水或含氟食品可有效抑制蛀牙

b. 氟攝取量需達到每日 0.05 mg/kg(按個體的體重計算,例如,體重 60 公斤重的成人,氟攝取量需達 3 mg)才能發揮預防蛀牙的功能,且此劑量適用於小孩與成人(含孕婦及哺乳期婦女)。[6]

既然有爭議,許多專家仍支持飲用水添加氟的理由何在?

簡單來說,我們居住的環境中,含氟牙膏唾手可得,兒童牙醫診所也四處林立,但貧富差距大的地區卻完全不是這番景象。另一篇含氟飲用水的研究明確指出,對 5~12 歲乳齒脫落正值換牙期的孩童而言,氟飲用水可降低齲齒、缺牙的風險,有益恆齒健康的成長。因此,基於公共衛生的平等福利,飲用水中添加氟可消弭不同階級牙齒醫療水準的差異。[7]

-----廣告,請繼續往下閱讀-----

Glass-half-full

由此可知,與科學研究相比,衛生政策的制訂遠比大家想像得更為困難。個人自由和公共利益的衝突,在歐美及世界各地不時上演。以疫苗施打為例,在美國,相當多的民眾畏懼施打疫苗,深恐疫苗裡的化學物質會傷害人體,但矛盾的是,反對自己小孩接受疫苗的雙親卻無懼於傳染病的威脅。其中公開宣導此事的名人就是演員金凱瑞,以及現今的美國總統候選人川普了。然而,事實證明,美國醫界在 1989 年引進新型的麻疹疫苗後,全美麻疹病例已從每年超過五萬的感染人數,下降至每年一百人以下。而由於經過多年的潛沉,麻疹流行又在 2014 年美國加州迪士尼爆發。這次的麻疹流行在美國政界引起廣泛討論——施打疫苗究竟是個人選擇,還是必須以防疫作戰觀點納入公權力的一環呢?[8-10]。

飲用水是否應該添加氟,與施打疫苗防疫的爭議具異曲同工之妙。如同各式各樣的科學問題一般,儘管我們充分理解了最新的科研證據,並克服非理性的恐懼,也並不代表我們就獲得了不容質疑的「正解」。它背後牽涉的社會脈絡、政策考量往往包含其他深意,以及每一個閱聽者不該輕易放棄理性的判斷力與選擇權。

本文感謝專欄作者蔣維倫的大力協助及審訂

  1. <105年7月起上路的食品安全管理新制!> 食品藥物管理署新聞
  2. <食藥署7月新制 氟鹽嬰兒奶粉標示入列> 中央通訊社
  3. <食藥7月新制 嬰兒奶粉、含氟鹽標示> 中時電子報
  4. <Figuring out phobia: Researchers are using neuroimaging techniques to delve into the neurobiological underpinnings of phobias, with a view to improving treatments.>
  5. <讓我們忽視真正危險的「化學恐懼症」> BBC新聞網
  6.  <Scientific Opinion on Dietary Reference Values for fluoride> 歐洲食品安全局
  7.  Adding fluoride to water supplies, the BMJ, 335, 2007, doi: http://dx.doi.org/10.1136/bmj.39318.562951.BE
  8. Measles outbreak: How bad is it? CNN news
  9. What Travelers Need to Know About Measles. The New York Times
  10. 美國麻疹「死灰復燃」 1月已有102例恐爆發大流行. 關鍵評論網
-----廣告,請繼續往下閱讀-----
文章難易度
Dino
10 篇文章 ・ 5 位粉絲
週間為科普人兼專利人,週末悄悄變身為素人畫家。 臺大動物學系學士、動物學研究所碩士畢,主修病毒遺傳。美國常春藤Dartmouth College工商管理學碩士畢。 譯有多本科普人文書籍與影片字幕,熱愛科普閱讀、寫作和從科學發想的藝術創作。獲頒吳大猷科學普及著作翻譯類獎。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
氟鹽奶粉大誤會!氟怎麼變成我們心底恐懼的「那個人」?
Dino
・2016/07/05 ・2602字 ・閱讀時間約 5 分鐘 ・SR值 598 ・九年級

-----廣告,請繼續往下閱讀-----

前陣子引發瘋狂轉發的文章,談到嬰兒奶粉加氟鹽的劑量問題:奶粉加氟鹽讓嬰兒天天吃、餐餐吃,怎麼可能不累積過量毒素?傷腦、傷骨、傷牙、傷神經系統、易引起肌肉骨骼神經毀損與甲狀腺失衡⋯⋯媽媽們若不提高警覺,豈不讓自己的孩子真的輸在起跑點?

然而,這一切真是天大的誤會!釐清其政策背後的用意,食藥署出於讓消費者具備更多選擇權,要求下列商品必須充分列出內容物成分:1. 奶粉;2. 含氟的食鹽。而非如網路謠言所傳,將嬰兒奶粉混合含氟食鹽販售[1-3]

baby-472922_640
媽媽們不用擔心,市面上沒有加氟鹽的嬰兒奶粉。圖/pixabay

相關謠言屢見不鮮且擴散力強的原因 

除了主流媒體頻繁「量產」不經求證的報導,並加以過度渲染以外,讀者即使面對資訊公開、敘述清晰的新聞,仍不免在腦中自行連結,喚起心底深層的恐懼。當恐懼升起,理性判讀的能力自然隨之下降。

-----廣告,請繼續往下閱讀-----

恐懼症(phobia)屬於精神官能症精神官能症的一類[4],患者對某些事物或情境會產生莫名的恐懼,並且時常不是建立在「理性」的基礎之上。多數人較為熟悉的恐懼症包括懼高症(Acrophobia)、幽閉恐懼症(Claustrophobia)、恐同症(Homophobia),或是社交恐懼症(Sociophobia)。但隨著媒體反覆播送同一則訊息,單一意外事件儘管事實上只發生了一次,卻容易帶給人們發生十次以上的錯覺,也因此每個閱聽者的心底深處在不知不覺中被置入了《哈利波特》小說裡不能說出口的「那個人」。

lord_voldemort_by_hermyemma-d5xho3i
我們對於化學製品的恐懼,就像是心底被置入《哈利波特》小說中的「那個人」一樣。

其中近來最為普遍的恐懼症莫過於「化學恐懼症」[5]——對任何「化學製品」的過度恐懼。這類的恐懼主要源自情緒,而非明確的科學證據。風險認知顧問大衛.洛佩克(David Ropeik)提及:「雖然有些人認為凡事寧可謹慎為上,但非理性的恐懼反而會給身體健康帶來負面影響。」

為什麼「化學恐懼症」的渲染力格外強大?

理由很簡單,佛地魔都怕死,一般人當然也怕死。既然下肚的化學製品和我們的身體息息相關,不會有人願意拿自己或自己的孩子當白老鼠,所以民眾自行解讀時事、加以腦補的案例便屢見不鮮了。

-----廣告,請繼續往下閱讀-----

洛佩克進一步指出:證據顯示,人類普遍害怕「人造」的東西,偏好「自然」。正因如此,許多人擔心 WiFi 訊號的輻射量,卻願意在沒有塗抹防曬乳的情況下享受日光浴——殊不知,紫外線照射是皮膚癌的重要誘因,而各種實驗都未能證明 WiFi 訊號會對人體構成持續傷害。

氟的爭議持續延燒

回到上述奶粉混合含氟食鹽的一場誤會,其實不全然算是危言聳聽,直到目前為止,關於氟對人體的影響仍未有定論

2013 年,歐洲食品安全局 (European Food Safety Authority, EFSA)接受歐盟執委會委託,研究氟的安全性並據此制訂攝取量。而根據期研究結果,由於氟並非人體必須物質,因此無法訂出「最適攝取量」,僅能訂出符合人體安全的最低有效劑量 。而 EFSA 的論文說明:

a. 攝取適量含氟飲用水或含氟食品可有效抑制蛀牙

-----廣告,請繼續往下閱讀-----

b. 氟攝取量需達到每日 0.05 mg/kg(按個體的體重計算,例如,體重 60 公斤重的成人,氟攝取量需達 3 mg)才能發揮預防蛀牙的功能,且此劑量適用於小孩與成人(含孕婦及哺乳期婦女)。[6]

既然有爭議,許多專家仍支持飲用水添加氟的理由何在?

簡單來說,我們居住的環境中,含氟牙膏唾手可得,兒童牙醫診所也四處林立,但貧富差距大的地區卻完全不是這番景象。另一篇含氟飲用水的研究明確指出,對 5~12 歲乳齒脫落正值換牙期的孩童而言,氟飲用水可降低齲齒、缺牙的風險,有益恆齒健康的成長。因此,基於公共衛生的平等福利,飲用水中添加氟可消弭不同階級牙齒醫療水準的差異。[7]

Glass-half-full

由此可知,與科學研究相比,衛生政策的制訂遠比大家想像得更為困難。個人自由和公共利益的衝突,在歐美及世界各地不時上演。以疫苗施打為例,在美國,相當多的民眾畏懼施打疫苗,深恐疫苗裡的化學物質會傷害人體,但矛盾的是,反對自己小孩接受疫苗的雙親卻無懼於傳染病的威脅。其中公開宣導此事的名人就是演員金凱瑞,以及現今的美國總統候選人川普了。然而,事實證明,美國醫界在 1989 年引進新型的麻疹疫苗後,全美麻疹病例已從每年超過五萬的感染人數,下降至每年一百人以下。而由於經過多年的潛沉,麻疹流行又在 2014 年美國加州迪士尼爆發。這次的麻疹流行在美國政界引起廣泛討論——施打疫苗究竟是個人選擇,還是必須以防疫作戰觀點納入公權力的一環呢?[8-10]。

飲用水是否應該添加氟,與施打疫苗防疫的爭議具異曲同工之妙。如同各式各樣的科學問題一般,儘管我們充分理解了最新的科研證據,並克服非理性的恐懼,也並不代表我們就獲得了不容質疑的「正解」。它背後牽涉的社會脈絡、政策考量往往包含其他深意,以及每一個閱聽者不該輕易放棄理性的判斷力與選擇權。

-----廣告,請繼續往下閱讀-----

本文感謝專欄作者蔣維倫的大力協助及審訂

  1. <105年7月起上路的食品安全管理新制!> 食品藥物管理署新聞
  2. <食藥署7月新制 氟鹽嬰兒奶粉標示入列> 中央通訊社
  3. <食藥7月新制 嬰兒奶粉、含氟鹽標示> 中時電子報
  4. <Figuring out phobia: Researchers are using neuroimaging techniques to delve into the neurobiological underpinnings of phobias, with a view to improving treatments.>
  5. <讓我們忽視真正危險的「化學恐懼症」> BBC新聞網
  6.  <Scientific Opinion on Dietary Reference Values for fluoride> 歐洲食品安全局
  7.  Adding fluoride to water supplies, the BMJ, 335, 2007, doi: http://dx.doi.org/10.1136/bmj.39318.562951.BE
  8. Measles outbreak: How bad is it? CNN news
  9. What Travelers Need to Know About Measles. The New York Times
  10. 美國麻疹「死灰復燃」 1月已有102例恐爆發大流行. 關鍵評論網
-----廣告,請繼續往下閱讀-----
文章難易度
Dino
10 篇文章 ・ 5 位粉絲
週間為科普人兼專利人,週末悄悄變身為素人畫家。 臺大動物學系學士、動物學研究所碩士畢,主修病毒遺傳。美國常春藤Dartmouth College工商管理學碩士畢。 譯有多本科普人文書籍與影片字幕,熱愛科普閱讀、寫作和從科學發想的藝術創作。獲頒吳大猷科學普及著作翻譯類獎。

0

6
4

文字

分享

0
6
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。