Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

漸凍人的破冰挑戰──淺談 ALS 的最新治療研究

活躍星系核_96
・2014/08/26 ・3176字 ・閱讀時間約 6 分鐘 ・SR值 591 ・九年級

作者:蕭艾琳|台灣大學微生物學研究所

試想一桶摻冰的冷水當頭澆下,沁涼得讓人直打哆嗦,毛孔自然全縮了起來, 渾身僵直,處在原地無法動彈──這種短暫引起的不適,宛如被禁錮在己身的感覺,竟是長期伴隨著肌萎縮性脊髓側索硬化症(Amyotrophic Lateral Sclerosis, ALS)患者,俗稱漸凍人,或者眾人耳熟的是另個更加響亮的名稱「路‧蓋里格氏病」,得名於曾在大聯盟紐約洋基隊效力的棒球明星,卻因病被迫提前結束大好職業生涯的路‧蓋里格(Lou Gehrig)。

今年夏天藉由社交網路平台,主要是推特和臉書的群起響應,如病毒般傳播開來的冰桶挑戰(Ice Bucket Challenge)發起者彼得‧福瑞特(Peter Frate),前波士頓大學的外野手,和路‧蓋里格有著相似的命運,皆在巔峰的青壯年時期發病,終其一生得和目前醫界仍束手無策的神經退化性疾病搏鬥。之所以發起這個 看似八竿子打不著一氣的活動,無非是希望透過簡單的親身體驗,可以喚起世人對罕見疾病的重視,並慷慨解囊捐獻給肌萎縮性脊髓側索硬化症協會(ALS Association,ALSA),爭取病友的福利和資助新興療法的研究。

罹患ALS的Pete Frates
罹患ALS的Pete Frates 圖片來源:Pete Frates

ALS 是成人最常見的運動神經元疾病(Motor Neuron Diseases,MND),距 今約一百六十年前由法國現代神經學之父讓-馬汀‧沙可(Jean-Martin Charcot, 1825-1893)醫師發現首例病患的臨床病徵,其名 Amyotrophic 源自於希臘字根, 意義為「無肌肉滋養(no muscle nourishment)」。

-----廣告,請繼續往下閱讀-----

顧名思義,正常人身上負責傳遞收縮訊息給肌肉的運動神經元 (motor neuron)選擇性死亡,由於無法接收到上或下游運動神經元傳訊,其調控的肌肉會逐漸地萎縮,且因病程迅速,常侵犯腦部或脊髓,發病後兩到五年內患者將失去對隨意肌的控制能力,起先是出現無力、口齒不清、流口水等症狀,嚴重者則造成全身癱瘓、呼吸衰竭,甚至死亡。

如此可怖的疾病,並不影響接收外界刺激的感覺神經元(sensory neuron), 故患者儘管意識清醒,知曉周遭發生的事物,卻動彈不得的困在病榻上,飽受病魔煎熬,實是心靈層面的牢獄。

Credit: Stevevia Flickr
Credit: Stevevia Flickr

ALS 屬於全球普及率十萬分之五的罕見疾病,縱然科技日新月異,美國食品藥物管理局(Food and Drug Administration,FDA)唯一核可的藥物銳利得 (Riluzole)卻也只能做到趨緩病程,降低一半以上的死亡風險,但患者最終仍會因呼吸肌無力而死亡。

正因目前仍未出現有效治療 ALS 的方式,與其繼續坐等國際大藥廠評估孤兒藥成本與利潤的拿捏,ALS 病患與其家屬挺身成立的互助組織 ALSA,主動發起轉譯研究進階治療 ALS 計畫 (Translational Research Advancing Therapy for ALS,TREAT ALS),因有鑑於許多機構包含美國國家衛生研究院(The National Institutes of Health,NIH)在內,皆有 ALS 的致病機轉背景研究,故該計畫轉而將目標放在建立起頂尖科學團隊和商業投資之間的橋樑,並非只是短期的治療策略,其旨在於結合現有與新開發的藥物,支持實驗性療法加速進入美國食品藥物管理局(Food and Drug Administration,FDA)核准的臨床試驗,通過後再具體應用在病人的治療上。

-----廣告,請繼續往下閱讀-----

根據今年 ALSA 旗下發行的刊物《今日 ALS 研究》(Research ALS Today,簡稱 RAT)春季號報導,介紹了現今極具發展潛力的反義寡核苷酸(Antisense oligonucleotides,ASOs)療法。

所謂的反義寡核苷酸為短單股去氧核醣核酸分子,可想像是條成串的圓珠,一旦被神經細胞內吞進去,可以選擇性鎖定分子機制作用,像是超氧化物歧化酶 (superoxide dismutase, SOD1)的蛋白質製造,其作用方式並非修正突變的基因,而大多設計成減少獲得功能(gain-of-function)突變帶來的傷害。然而,在特定情況下,它亦可增加基因產物來克服剪接(splicing)所致的缺陷。目前此治療策略的發展是針對脊髓肌萎患者,尤其是運動神經元存活(survival of motor neuron,SMN)蛋白質的功能缺失所致的小兒運動神經元疾病,同時也有潛力運用在治療亨丁頓氏症、阿茲海默氏症和強直性肌肉失養症。

舉例來說,目前已知 SOD1 的主要功能為分解人體內的自由基,避免細胞遭受損害,而 SOD1 基因突變會造成百分之二十的家族性 ALS,以及約百分之二 的其他型 ALS。

以 ASOs 治療 SOD1-ALS 的先驅研究團隊,來自 ALSA 贊助的科學家克里夫蘭醫師(Dr. Cleveland)和神經研究中心的理查‧史密斯博士(Richard Smith, M.D),與加州卡爾斯巴德(Carlsbad, CA)的 ASOs 發展者伊希斯製藥(Isis Pharmaceuticals)合作,先是實驗SOD1-ALS 老鼠模型,結果發現此治療可以延緩百分之三十七的疾病進程速度,相較預期症狀出現的時間點延後。

-----廣告,請繼續往下閱讀-----

再進一步按比例應用至第一期人體試驗階段,其設計如下:隨機分配病患至四組,每組八位,以脊髓注射藥物的方式施用百憂解或抗 SOD1 ASO 超過十一個半小時(六位採主動治療,另兩位則服用百憂解),並於安全的情況下提高藥物劑量,經過二十八天的周期後再進行新的調整。

經過實驗組和控制組的結果比較,科學家發現,兩種藥物的不良副作用發生頻率相近,且主要和試驗步驟有關,故可初步排除劑量限制性毒性(dose-limiting toxic effects)、安全性或耐受性上的疑慮。另外,由於最初臨床階段尚未評估 ASO 藥效,目前該團隊正在著手使用新的寡核苷酸骨架和核醣核酸目標物,來修正治療策略。

在 SOD1 ASO 治療層面得到突破性的進展,科學團隊將目標放眼到對 ALS 影響甚鉅的標靶基因 C9ORF72,其造成百分之四十的家族性 ALS,以及百分之六的零星疾病。

目前 C9ORF72 致病機轉的主流假說為六個核苷酸 GGGGCC 為一單位的重複性擴增,使得核醣核酸轉錄出數百或數千個產物,如此一來,當核醣核酸摺疊成立體結構時,會困住轉錄因子,進而改變細胞的代謝機制,甚至會轉譯出錯誤摺疊型態的蛋白 repeat-associated non ATG(RAN),此類突變同時也會造成正常 C9ORF72 蛋白數量的衰減。

-----廣告,請繼續往下閱讀-----
圖片來源:維基百科
圖片來源:維基百科

然而,透過源自於病患的誘導性多功能幹細胞(induced pluripotent stem cells, iPSC)轉化成運動神經元後進行實驗,幾個不同的團隊研究顯示 ASOs 的確可減少 C9ORF72 病理現象,包含核醣核酸的聚集、轉錄因子的異常結合、無法調節其他基因的表達、對於穀氨酸(glutamate)興奮毒性(excitoxicity)的感受性, 和神經元性放電異常──但非所有異常皆對治療有反應,像是 RAN 轉譯產物、由去氧核醣核酸對應股的 CCCCGG 重複引起的核醣核酸聚集等,ASOs 是為無效治療,仍需更多研究上的突破。

著名的英國物理學家史蒂芬‧霍金(Stephen Hawking,1942-),自二十一歲確診為 ALS 開始,已超出當時醫生認定只能再多存活兩年的預測,目前與疾病共存已超過五十載,他以自身努力證實生理方面的殘疾無法腐壞堅強的心靈,曾幽默的如是說道:「我察覺到即使很多人主張一切都是命中註定的,而且我們無 法改變任何事情,他們在過馬路前還是一樣會停下來左右張望。」

現階段雖有許多未知的謎團靜待解開,前方的研究之路依然漫漫,如何克服接踵而來的挑戰,尋獲緩解 ALS 病友們不適和家屬煎熬的良方,這是一桶桶冰水也無法澆熄的熱情,更是科學家們堅持不懈、獻身研究的最大動力。

資料來源

-----廣告,請繼續往下閱讀-----
  1. Research ALS Today (The ALS Association, Volume 14, Spring 2014)
  2. Pete Frates: A profile in ALS courage. ESPN MLB [July 04, 2014]
  3. Pete Frates
  4. 冰桶挑戰:痛苦的失真。苦勞網[2014/08/19]
  5. 衛教資料-運動神經元病變篇。台大醫院
  6. Facts About Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease)
  7. 中華民國運動神經元疾病病友協會
  8. Northeast ALS Consortium
  9. ALS Association 

參考文獻

  1. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. Aug 2006;116(8):2290-6. Epub 2006 Jul 27.
  2. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol. May 2013;12(5):435-42.
  3. Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Sci Transl Med. Oct 23, 2013;5(208):208ra149.
  4. Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron. Oct 16, 2013;80(2):415-28.
  5. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9ORF72 RNA foci as therapy for amyotrophic lateral sclerosis and frontotemporal dementia. Proc Nat Acad Sci USA. Nov 19, 2013;110(47):E4530-9.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
為什麼運動神經元會退化?又為何是從四肢開始?
研之有物│中央研究院_96
・2017/09/28 ・4053字 ・閱讀時間約 8 分鐘 ・SR值 552 ・八年級

運動神經元研究

還記得「漸凍人冰桶考驗」嗎?金城武淋下冰水的瀟灑令人難以忘懷,但本文想將你的注意力轉移到漸凍症本身。中研院分子生物研究所的陳俊安助研究員,與團隊從發育生物學的角度,尋找「會退化」和「不會退化」的運動神經元在基因表現上哪裡不同,希望未來有助於漸凍症的精準醫療。

先來進行眼力考驗,下圖野生型小鼠胚胎、 類 ALS (漸凍症)模式小鼠胚胎,看得出「運動神經元」哪裡不同嗎?

兩種小鼠胚胎的運動神經元比較(中間長長、尾端伸出許多樹突的那一條)。 圖片來源/Crucial Cluster: MicroRNAs Keep Motor Neurons Alive

左圖的野生型小鼠,運動神經元軸突健康粗壯,可以牢牢抓住肌肉細胞,並控制四肢作出大腦命令的、或反射性的動作。但右圖的類 ALS 模式小鼠,運動神經下端的樹突變少了,無法牢牢抓住肌肉細胞,四肢也跟著萎縮、不聽使喚。

這個「運動神經元退化」的情況會發生在小鼠身上,也會發生在人類身上。「漸凍症」就是運動神經元退化導致的疾病,會從四肢開始無力,漸漸演進至全身肌肉萎縮、呼吸衰竭。

-----廣告,請繼續往下閱讀-----

運動神經元疾病(motorneuron diseases)俗稱「漸凍症」,其特性與症狀發展。 資料來源/中華民國運動神經元疾病病友協會(漸凍人協會)。圖說重製/林婷嫻、張語辰

在運動神經元疾病的分類中,脊髓性肌肉萎縮症(SMA) 是遺傳性疾病,好發於嬰孩時期,致病機轉是因為爸爸媽媽同時帶了一套有缺陷的 SMN1 基因。當 SMN1 基因有缺陷時會讓運動神經元死亡,通常小朋友六個月大應該可以坐起來,但有些嬰兒的父母卻發現小寶貝沒辦法坐起時,檢查後才知道原來是脊髓性肌肉萎縮症(SMA)。

而其他的運動神經元疾病,包含肌萎縮性脊髓側索硬化症(ALS) 等,雖然也是由於運動神經元退化死亡,但尚有九成病人發病的原因是不清楚的。

為什麼運動神經元會退化?為何從四肢開始?為何有些肌肉不受影響?科學家尚在理解中。

什麼使運動神經元退化?

在《愛的萬物論》電影中,主角霍金博士從四肢開始退化,初期是手部肌肉拿不穩茶杯,漸漸雙腿肌肉無力、跌倒。但泌尿生殖系統較不受影響,生下了可愛的孩子們,他對朋友笑說是「另一個全自動的系統」。直到最後,霍金博士控制眼球的肌肉仍能正常運作,讓他可以用眼球操控鍵盤說話、書寫。

-----廣告,請繼續往下閱讀-----

《愛的萬物論》電影中,主角霍金博士從四肢運動神經開始退化,初期無法控制手部肌肉寫字。source:IMDb

中研院分子生物所的陳俊安團隊專精於發育生物學,閱讀運動神經元疾病的文獻、和醫生討論,發現脊髓運動神經元在發育時都是從同樣的前驅細胞分化而來,但「四肢」的運動神經元會先發病,而控制眼球和泌尿生殖系統的運動神經元仍能正常運作。

「是否不同的運動神經元亞型(subtype) ,會有不同基因表現的差異,導致這種發病程度的不等?」陳俊安團隊從這裡開始思考,並將小鼠胚胎幹細胞(ES cell)分化成各式的運動神經元亞型,再將各種亞型進行次世代定序,檢查基因表現哪裡不同。

小鼠胚胎幹細胞(ES cell)在培養皿中,會根據外在訊號的濃度高低、生長因子的引導,演繹出不同的運動神經元前驅細胞,並進一步分化成不同的亞型(subtype)。 資料來源/陳俊安提供。圖說重製/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

若以前讀的生物課已忘得差不多,沒關係,本文從你我體內的 DNA、RNA 、蛋白質追本溯源,其中藏著可能影響運動神經元退化的開關:mir-17~92 和 PTEN 。

mir-17~92:阻止控制四肢的運動神經細胞凋零

生物體內的細胞核中,DNA 就像影印機中的正本,會複印出帶有相同基因訊息的 RNA 。 RNA 有兩種: 一種是負責製造蛋白質的 mRNA(messenger RNA),就像要把基因訊息傳給蛋白質的傳訊官;另一種是 ncRNA(non-coding RNA),不負責製造蛋白質,而是直接以 RNA 的身分來執行任務。

有一些 ncRNA 會待在細胞核裡,像是後勤單位補給前線作戰資源。另外有一些 ncRNA 像是 microRNA 會直接出核,就像親身到前線出任務的軍官。

細胞內 DNA、RNA、蛋白質的機制。圖說設計/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

直接到前線出任務的 ncRNA 要做些什麼? 可忙著呢!其中一種是幫忙「踩剎車」,控制 mRNA 製造蛋白質的速度和數量。負責這個任務的是一種小分子的 ncRNA,亦即 microRNA ,會藉由辨認基因序列相對應的標靶 mRNA ,並與之結合,進而抑制標靶 mRNA 製造蛋白質。

mRNA 產生太多或太少蛋白質都不好,但又不能把產生的開關關掉。microRNA 就像煞車,讓 mRNA 適時停下來,是自然界找到的調控方式。圖說設計/林婷嫻、張語辰

在各種運動神經元亞型中,陳俊安團隊透過次世代定序和生化分析,發現「四肢運動神經元」中,有一群叫做 mir-17~92 的 microRNA 表現量特別高 ,且會抑制一種叫做 PTEN 的蛋白質、影響調控其進入細胞核的相關酵素表現,阻止 PTEN 進入運動神經元的細胞核中、造成運動神經元的細胞凋零。

野生型小鼠(左)由於有 mir-17~92 抑制 PTEN 蛋白質,維持運動神經細胞正常運作。但剔除 mir-17~92 的小鼠,PTEN 蛋白質變多,甚至進入運動神經細胞裡、造成細胞凋零。資料來源/Mir-17~92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN.。圖說重製/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

陳俊安團隊透過基因剃除小鼠進一步了解,發現若運動神經元中 mir-17~92 被剃除,這隻小鼠會變得很小隻、四肢萎縮不太能動,切片檢查看到控制手和腳的運動神經元幾乎都死掉,但控制肋骨、頭部、臉部的運動神經元都沒問題。仔細一看,這隻 mir-17~92 基因剃除小鼠四肢無法活動的狀況,和漸凍人有點類似——漸凍人也是四肢協調發生問題。

我們發現被剃除 mir-17~92 的小鼠和漸凍人相似,因此推論 mir-17~92 對於控制四肢運動神經元可能很重要,並思考其作為治療漸凍症的契機。

為了驗證推論,陳俊安團隊另外將 SOD1 基因缺陷漸凍鼠(漸凍症之一種模式小鼠)體內的 mir-17~92 表現量提高、做為治療的方式,發現其原本無力的四肢恢復得較為正常,且小鼠壽命也延長了 20 多天 。「 20 多天的壽命對 ALS 模式小鼠而言可能不算太長,大約是 1/6 ,但對漸凍人而言,延長 1/6 的壽命就是多了 將近 10 年」陳俊安說明。

正常小鼠、ALS(漸凍症之一種)模式小鼠、提高體內 mir-17~92 表現量的 ALS 模式小鼠,透過 X 光看見四肢正常/萎縮/復原的情況。資料來源/陳俊安 提供。圖說重製/林婷嫻、張語辰

mir-17~92:四肢運動神經的「電池」

陳俊安將人體比喻為台灣地圖,運動神經元像是從台北(脊髓中樞)出發、貫穿台灣(人體)的高速公路,各部位肌肉是各種運動神經元的終點站。臉部和舌頭比較近,像是台北到桃園的距離;腿部肌肉最遠,像是台北到墾丁的距離。

-----廣告,請繼續往下閱讀-----

將人體比喻為台灣地圖,到達不同目的地的「運動神經」樹突長度相差很多, mir-17~92 在各種運動神經元內的表現量也不同。 資料來源:陳俊安提供 圖說重製/林婷嫻、張語辰

一開始從脊髓出發,各種運動神經元所帶的能量都相同,就像每台車都加了容量相同的油箱,到了終點站肌肉會釋放另一種蛋白質給運動神經元,補充神經元的能量讓神經元不會力竭而亡。但運動神經元軸突在前往肌肉的途中就是靠這桶油,若到不了肌肉終點站,運動神經元就會死掉。

以這桶油量從台北跑到台中沒問題,但跑到墾丁太過勉強,可行的方式是換成「油電混合車」。而 mir-17~92 就像四肢運動神經元的「電池」,幫助抑制 PTEN 蛋白質的表現量,阻止 PTEN 讓運動神經元凋零,幫助四肢運動神經元順利延伸到遠遠的手臂和腿部,控制四肢肌肉正常運作。

油電混合車很經濟實惠,但最怕「電池」壞掉!漸凍症發生的機制,可能是 mir-17~92這群四肢運動神經元的「電池」不夠力,最終導致無法順利控制四肢肌肉。

運動神經元疾病(漸凍症)的致病原因,至今仍然不明朗,也缺乏治療藥物。陳俊安團隊將繼續透過漸凍症病人的 iPSC(誘導性多功能幹細胞)培養運動神經元,驗證目前的推論是否可行,並深入了解運動神經元發育與退化的分子機制。

-----廣告,請繼續往下閱讀-----

若要使 mir-17~92 的類似物進入運動神經元,提升其保護作用,已知的瓶頸是 microRNA 並非可以服用的小分子,需要從中樞神經系統進行基因治療。另外,現階段雖能透過漸凍症病人的 iPSC (誘導性多功能幹細胞)培養運動神經元,但陳俊安團隊仍在尋找該用什麼樣的機制來模擬漸凍症的發病過程,再看看用什麼方式減緩運動神經細胞退化。

為了持續前進下一步,陳俊安團隊期待能和台灣的醫院合作,以及借力基礎化學、生物化學、生物醫學等領域的專業團隊,一起討論努力的方向。

希望未來能為精準醫療提供更好的依據,了解不同運動神經元的亞型哪裡出了問題,並特別調整該運動神經元的基因表現。

在理性的生物學討論中,陳俊安流露著對漸凍症的關懷。 攝影/張語辰

延伸閱讀

CC 4.0

 

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3654 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
漸凍人的破冰挑戰──淺談 ALS 的最新治療研究
活躍星系核_96
・2014/08/26 ・3176字 ・閱讀時間約 6 分鐘 ・SR值 591 ・九年級

作者:蕭艾琳|台灣大學微生物學研究所

試想一桶摻冰的冷水當頭澆下,沁涼得讓人直打哆嗦,毛孔自然全縮了起來, 渾身僵直,處在原地無法動彈──這種短暫引起的不適,宛如被禁錮在己身的感覺,竟是長期伴隨著肌萎縮性脊髓側索硬化症(Amyotrophic Lateral Sclerosis, ALS)患者,俗稱漸凍人,或者眾人耳熟的是另個更加響亮的名稱「路‧蓋里格氏病」,得名於曾在大聯盟紐約洋基隊效力的棒球明星,卻因病被迫提前結束大好職業生涯的路‧蓋里格(Lou Gehrig)。

今年夏天藉由社交網路平台,主要是推特和臉書的群起響應,如病毒般傳播開來的冰桶挑戰(Ice Bucket Challenge)發起者彼得‧福瑞特(Peter Frate),前波士頓大學的外野手,和路‧蓋里格有著相似的命運,皆在巔峰的青壯年時期發病,終其一生得和目前醫界仍束手無策的神經退化性疾病搏鬥。之所以發起這個 看似八竿子打不著一氣的活動,無非是希望透過簡單的親身體驗,可以喚起世人對罕見疾病的重視,並慷慨解囊捐獻給肌萎縮性脊髓側索硬化症協會(ALS Association,ALSA),爭取病友的福利和資助新興療法的研究。

罹患ALS的Pete Frates
罹患ALS的Pete Frates 圖片來源:Pete Frates

-----廣告,請繼續往下閱讀-----

ALS 是成人最常見的運動神經元疾病(Motor Neuron Diseases,MND),距 今約一百六十年前由法國現代神經學之父讓-馬汀‧沙可(Jean-Martin Charcot, 1825-1893)醫師發現首例病患的臨床病徵,其名 Amyotrophic 源自於希臘字根, 意義為「無肌肉滋養(no muscle nourishment)」。

顧名思義,正常人身上負責傳遞收縮訊息給肌肉的運動神經元 (motor neuron)選擇性死亡,由於無法接收到上或下游運動神經元傳訊,其調控的肌肉會逐漸地萎縮,且因病程迅速,常侵犯腦部或脊髓,發病後兩到五年內患者將失去對隨意肌的控制能力,起先是出現無力、口齒不清、流口水等症狀,嚴重者則造成全身癱瘓、呼吸衰竭,甚至死亡。

如此可怖的疾病,並不影響接收外界刺激的感覺神經元(sensory neuron), 故患者儘管意識清醒,知曉周遭發生的事物,卻動彈不得的困在病榻上,飽受病魔煎熬,實是心靈層面的牢獄。

Credit: Stevevia Flickr
Credit: Stevevia Flickr

-----廣告,請繼續往下閱讀-----

ALS 屬於全球普及率十萬分之五的罕見疾病,縱然科技日新月異,美國食品藥物管理局(Food and Drug Administration,FDA)唯一核可的藥物銳利得 (Riluzole)卻也只能做到趨緩病程,降低一半以上的死亡風險,但患者最終仍會因呼吸肌無力而死亡。

正因目前仍未出現有效治療 ALS 的方式,與其繼續坐等國際大藥廠評估孤兒藥成本與利潤的拿捏,ALS 病患與其家屬挺身成立的互助組織 ALSA,主動發起轉譯研究進階治療 ALS 計畫 (Translational Research Advancing Therapy for ALS,TREAT ALS),因有鑑於許多機構包含美國國家衛生研究院(The National Institutes of Health,NIH)在內,皆有 ALS 的致病機轉背景研究,故該計畫轉而將目標放在建立起頂尖科學團隊和商業投資之間的橋樑,並非只是短期的治療策略,其旨在於結合現有與新開發的藥物,支持實驗性療法加速進入美國食品藥物管理局(Food and Drug Administration,FDA)核准的臨床試驗,通過後再具體應用在病人的治療上。

根據今年 ALSA 旗下發行的刊物《今日 ALS 研究》(Research ALS Today,簡稱 RAT)春季號報導,介紹了現今極具發展潛力的反義寡核苷酸(Antisense oligonucleotides,ASOs)療法。

所謂的反義寡核苷酸為短單股去氧核醣核酸分子,可想像是條成串的圓珠,一旦被神經細胞內吞進去,可以選擇性鎖定分子機制作用,像是超氧化物歧化酶 (superoxide dismutase, SOD1)的蛋白質製造,其作用方式並非修正突變的基因,而大多設計成減少獲得功能(gain-of-function)突變帶來的傷害。然而,在特定情況下,它亦可增加基因產物來克服剪接(splicing)所致的缺陷。目前此治療策略的發展是針對脊髓肌萎患者,尤其是運動神經元存活(survival of motor neuron,SMN)蛋白質的功能缺失所致的小兒運動神經元疾病,同時也有潛力運用在治療亨丁頓氏症、阿茲海默氏症和強直性肌肉失養症。

-----廣告,請繼續往下閱讀-----

舉例來說,目前已知 SOD1 的主要功能為分解人體內的自由基,避免細胞遭受損害,而 SOD1 基因突變會造成百分之二十的家族性 ALS,以及約百分之二 的其他型 ALS。

以 ASOs 治療 SOD1-ALS 的先驅研究團隊,來自 ALSA 贊助的科學家克里夫蘭醫師(Dr. Cleveland)和神經研究中心的理查‧史密斯博士(Richard Smith, M.D),與加州卡爾斯巴德(Carlsbad, CA)的 ASOs 發展者伊希斯製藥(Isis Pharmaceuticals)合作,先是實驗SOD1-ALS 老鼠模型,結果發現此治療可以延緩百分之三十七的疾病進程速度,相較預期症狀出現的時間點延後。

再進一步按比例應用至第一期人體試驗階段,其設計如下:隨機分配病患至四組,每組八位,以脊髓注射藥物的方式施用百憂解或抗 SOD1 ASO 超過十一個半小時(六位採主動治療,另兩位則服用百憂解),並於安全的情況下提高藥物劑量,經過二十八天的周期後再進行新的調整。

經過實驗組和控制組的結果比較,科學家發現,兩種藥物的不良副作用發生頻率相近,且主要和試驗步驟有關,故可初步排除劑量限制性毒性(dose-limiting toxic effects)、安全性或耐受性上的疑慮。另外,由於最初臨床階段尚未評估 ASO 藥效,目前該團隊正在著手使用新的寡核苷酸骨架和核醣核酸目標物,來修正治療策略。

-----廣告,請繼續往下閱讀-----

在 SOD1 ASO 治療層面得到突破性的進展,科學團隊將目標放眼到對 ALS 影響甚鉅的標靶基因 C9ORF72,其造成百分之四十的家族性 ALS,以及百分之六的零星疾病。

目前 C9ORF72 致病機轉的主流假說為六個核苷酸 GGGGCC 為一單位的重複性擴增,使得核醣核酸轉錄出數百或數千個產物,如此一來,當核醣核酸摺疊成立體結構時,會困住轉錄因子,進而改變細胞的代謝機制,甚至會轉譯出錯誤摺疊型態的蛋白 repeat-associated non ATG(RAN),此類突變同時也會造成正常 C9ORF72 蛋白數量的衰減。

圖片來源:維基百科
圖片來源:維基百科

然而,透過源自於病患的誘導性多功能幹細胞(induced pluripotent stem cells, iPSC)轉化成運動神經元後進行實驗,幾個不同的團隊研究顯示 ASOs 的確可減少 C9ORF72 病理現象,包含核醣核酸的聚集、轉錄因子的異常結合、無法調節其他基因的表達、對於穀氨酸(glutamate)興奮毒性(excitoxicity)的感受性, 和神經元性放電異常──但非所有異常皆對治療有反應,像是 RAN 轉譯產物、由去氧核醣核酸對應股的 CCCCGG 重複引起的核醣核酸聚集等,ASOs 是為無效治療,仍需更多研究上的突破。

-----廣告,請繼續往下閱讀-----

著名的英國物理學家史蒂芬‧霍金(Stephen Hawking,1942-),自二十一歲確診為 ALS 開始,已超出當時醫生認定只能再多存活兩年的預測,目前與疾病共存已超過五十載,他以自身努力證實生理方面的殘疾無法腐壞堅強的心靈,曾幽默的如是說道:「我察覺到即使很多人主張一切都是命中註定的,而且我們無 法改變任何事情,他們在過馬路前還是一樣會停下來左右張望。」

現階段雖有許多未知的謎團靜待解開,前方的研究之路依然漫漫,如何克服接踵而來的挑戰,尋獲緩解 ALS 病友們不適和家屬煎熬的良方,這是一桶桶冰水也無法澆熄的熱情,更是科學家們堅持不懈、獻身研究的最大動力。

資料來源

  1. Research ALS Today (The ALS Association, Volume 14, Spring 2014)
  2. Pete Frates: A profile in ALS courage. ESPN MLB [July 04, 2014]
  3. Pete Frates
  4. 冰桶挑戰:痛苦的失真。苦勞網[2014/08/19]
  5. 衛教資料-運動神經元病變篇。台大醫院
  6. Facts About Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease)
  7. 中華民國運動神經元疾病病友協會
  8. Northeast ALS Consortium
  9. ALS Association 

參考文獻

-----廣告,請繼續往下閱讀-----
  1. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. Aug 2006;116(8):2290-6. Epub 2006 Jul 27.
  2. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol. May 2013;12(5):435-42.
  3. Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Sci Transl Med. Oct 23, 2013;5(208):208ra149.
  4. Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron. Oct 16, 2013;80(2):415-28.
  5. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9ORF72 RNA foci as therapy for amyotrophic lateral sclerosis and frontotemporal dementia. Proc Nat Acad Sci USA. Nov 19, 2013;110(47):E4530-9.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
霍金的高科技輪椅-《知識大圖解》
知識大圖解_96
・2015/08/31 ・891字 ・閱讀時間約 1 分鐘 ・SR值 516 ・六年級

史蒂芬‧霍金的輪椅圖解。本圖出自知識大圖解
史蒂芬‧霍金的輪椅圖解。本圖節錄自《How It Works知識大圖解 國際中文版》第12期(2015年9月號),全見版請點擊本圖放大。

史蒂芬.霍金二十一歲的時候被診斷出罹患肌萎縮性脊髓側索硬化症(ALS)。ALS是一種運動神經元疾病,會導致控制肌肉的神經逐漸壞死。絕大多數患者會在五年內死亡,但幸運的是,霍金教授病情惡化的速度相當緩慢。即使如此,霍金也僅能做出極少數肌肉運動,而且主要集中在臉部肌肉。他與世界連結的方式,所仰賴的是他輪椅裡的電腦科技。

不可置信的是,霍金教授只須用一個按鈕就能操作他輪椅上平板電腦的所有功能──你不妨想像一下只用空白鍵操作電腦!霍金的電腦使用了一種名為EZ Keys的特殊介面,可以掃描螢幕鍵盤上的每一個字母。當霍金移動臉頰時,感應器會偵測他的動作,讓電腦停止掃描,藉此揀選字母。他也可以使用這個方法來掃描按鈕或選單選項,藉此控制電子郵件的程式、網路瀏覽器,甚至透過Skype撥打電話。

如今霍金打字的速度已降到每分鐘只能打一兩個字。為了解決這個問題,英特爾(Intel)的科學家利用霍金經常使用的字彙和寫作風格設計了一套演算法,可以精確預測他接下來想要用的字。

-----廣告,請繼續往下閱讀-----

思想控制的輪椅

當我們想說話時,大腦會將神經訊號送往喉嚨,即使你的肌肉無法產生讓人聽得見的聲音亦然。事實上,即使文字只出現在你的腦海裡,也會產生神經訊號。最初由美國航太總署艾姆斯研究中心(NASA Ames Research Center)研發的一項技術如今已用來幫助重度殘障人士,讓他們得以自主控制電動輪椅,或將思想傳送到語言合成機。使用者將電極貼在喉嚨的皮膚上,只要想著如「往左」或「停」等指令,機器便會自動偵測微弱的電子脈衝,將之解碼,然後朝輪椅傳達正確的指令。霍金曾嘗試這類的大腦介面,但對他來說,這仍不夠精準。按照目前的技術,電極擺放的位置如果稍微偏移,辨識率就會從94%降到50%以下。

 

 

本文節錄自《How It Works知識大圖解 國際中文版》第12期(2015年9月號)

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。