0

0
0

文字

分享

0
0
0

日光不只對醫療工作的品質有幫助喔!

葉綠舒
・2014/08/13 ・1167字 ・閱讀時間約 2 分鐘 ・SR值 443 ・四年級

之前筆者跟大家分享了康乃爾大學的研究「日光可以協助醫院提升醫療品質」之後,有些朋友問我對於其他行業,即使不需要輪班,是否日光也可以幫助提昇工作品質呢?

有充分陽光的Office Hours|CC by Tanel Teemusk
有充分陽光的Office Hours|CC by Tanel Teemusk

雖然筆者覺得應該是肯定有,但是沒有相關的研究證明,似乎也不應該馬上就給出答案來。

最近,伊利諾大學的研究發現,適度的照射日光,對於一般上班族的健康有幫助。而且,只需要提供有對外的窗戶的辦公環境,就可以看出差別。 這個研究調查了49位白天班的上班族。其中有27位辦公室沒有對外的窗戶,另外22位有對外的窗戶。一半的受試者以腕戴式活動記錄儀(actigraphy)記錄他們的日常活動以及是否有接受到日光等。

結果發現,比起完全沒有對外窗戶的辦公室,有對外的窗戶的辦公室,平均可以使員工多照射1.7倍的日光;而這些員工,平均每晚可以多睡46分鐘,睡眠的品質也較好(較少睡眠干擾sleep disturbance),活動力也較高。 雖然這篇研究沒有提到這些上班族的工作表現,但是筆者想,晚上睡得比較熟、睡得比較久,白天的精神當然也會比較好,工作表現應該也不會差吧? 筆者不禁想到之前工作的沙克研究所(The Salk Institute of Biological Studies),很多人知道The Salk是以建築設計聞名,但是較少人知道的是,沙克博士(Dr. Jonas Salk)當初找建築師設計時的理念就是「不能讓任何一間研究室沒有對外的窗戶」,現在看起來,沙克博士在五十多年前(The Salk創立於1960年)的理念,真的是領先世界喔!

-----廣告,請繼續往下閱讀-----
沙克研究所一隅。圖片來源:維基百科
沙克研究所一隅。圖片來源:維基百科

雖然,當筆者在那裡工作時發現,因為總是有層出不窮的遊客(日本觀光客最多)來參觀沙克的建築,因此有些研究室為了不讓自己有「魚缸」的感覺,已經將部分的窗戶用海報貼起來了……

沙克研究所,由海往內陸看。圖片來源:維基百科。
沙克研究所,由海往內陸看。圖片來源:維基百科
沙克研究所,由內陸往海看。這個角度走過去,腳會發軟!圖片來源:維基百科
沙克研究所,由內陸往海看。這個角度走過去,腳會發軟!圖片來源:維基百科

原刊載於作者部落格Miscellaneous999 

參考資料:

  1. 2014/8/8. Natural light in office boosts health. Science Daily.
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
3

文字

分享

0
2
3
大家都認為自己值得更多的薪水!給你更多錢會提升工作表現嗎?——《超越直覺》
一起來
・2024/05/02 ・1949字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

框架問題理應提醒我們,我們只要自動腦補就一定會犯錯。我們確實向來如此。不過「人類」這個對象不同於 AI 研究人員開發的機器人或電腦,並不會讓我們訝異到必須被迫改寫思考時的整個心智模式。相反地,一旦我們知道答案,就似乎總能找出先前被忽略、後來明顯相關的面向,就像拉扎斯菲爾德假想的《美國士兵》讀者——他們在事後發現,每一個對立的結果都同樣理所當然。

也許我們原本預期自己中了樂透之後會超級開心,結果中獎之後,卻發現自己很鬱悶,這個預測顯然很糟糕。但當我們意識到自己預測錯誤時,同時也獲得新的資訊,例如那些突然出現要借錢的親戚。於是我們會心想,如果早點知道這些資訊,就可以正確預測未來的幸福狀態,也許就不會去買樂透彩了。

因此,我們沒有質疑自己預測未來幸福程度的能力,反而只是認為我們漏掉了一些重要的東西,並且確保自己不再犯相同錯誤。然而我們卻一錯再錯。事實上,無論對於他人行為的預測失準了多少次,我們總是可以用當時未知的事情做為辯解。透過這種方式,我們掩蓋了框架問題,一再說服自己下次會做好,卻永遠都不明白我們真正錯在哪裡。

圖/envato

這種行為模式在動機與金錢報酬的關係中最為明顯,也最難消除。例如,實施金錢獎勵制度顯然能提升員工表現,而且數十年來,職場上大幅出現以績效為基礎的薪資制度,最具代表性的就是高階主管薪酬與股價掛鉤。

-----廣告,請繼續往下閱讀-----

當然,員工在意的顯然不只薪水,還有內在的愉悅感、認同感,以及在個人職涯上的成長與晉升等因素,這些都會影響工作表現。

在其他條件都相同的情況下,適當的金錢獎勵可以提升個人表現——這似乎理所當然。然而,多年來有多項研究顯示,薪酬與工作表現之間的關係,實際上的複雜程度讓人難以想像。

舉個例子,最近我跟雅虎(Yahoo!)的同事梅森(Winter Mason)進行了一系列網路實驗。我們給予受試者不同的薪資,並要求他們執行各種簡單的重複性工作,例如:按照正確的時間順序排列一組車流照片,或是在矩形網格上,找出隱藏在一堆英文字母中的英文單字。

所有受試者都是在亞馬遜土耳其機器人(Amazon’s Mechanical Turk)這個外包網站上招募而來,這個網站是亞馬遜公司於二○○五年推出,原先是用來找出重複的庫存商品。現在有數百家企業使用土耳其機器人進行「群眾外包」(crowd-source),處理五花八門的各種任務,像是標示圖片中的物品、描述新聞報導的觀點,或是判斷兩種說法中哪一個比較清楚。這個網站也是招募心理學實驗受試者的一個有效方法,就像心理學家多年來在大學校園裡張貼廣告那樣,不過土耳其機器人網站的「託客」(turkers)完成一件任務的報酬通常只需要幾美分,只占了研究經費的一小部分。

-----廣告,請繼續往下閱讀-----
圖/envato

我們的實驗總共納入數百位受試者,完成了數萬件任務。有些受試者完成一件任務只能得到 1 美分的酬勞,例如整理一組圖片、找出一個單字。但是,有些受試者完成相同任務卻會得到 5 美分或 10 美分。這在工資上是相當大的差異,要知道,美國電腦工程師的平均時薪只有聯邦最低工資的六倍,所以你可以預期這個工資差異會對受試者的行為產生強烈影響。

結果確實如此。我們付的錢越多,受試者離開實驗之前完成的任務就越多。我們還發現,不管工資多少,分配到「簡單」任務(每一組有兩張圖片需要歸類)的人,比分配到中等或困難任務(每一組有三至四張)的人完成更多任務。換句話說,這些都符合常理。

但接下來的問題是:雖然存在上述差異,我們發現這群受試者的工作品質,也就是歸類圖片的準確度,並不會因為工資不同而下降,即使只有正確完成才能拿到酬勞。

該如何解釋這個結果?我們並不十分確定。在受試者完成任務之後,我們問了一些問題,包括他們認為自己的工作該得到多少報酬。有趣的是,他們的回答與工作難度無關,而是取決於獲得的工資。平均而言,每件任務得到 1 美分的受試者,認為自己該得到 5 美分。得到 5 美分的認為自己該得到 8 美分,而得到 10 美分的則認為自己該得到 13 美分。

-----廣告,請繼續往下閱讀-----

換句話說,不論他們實際上得到多少(還記得有些受試者的工資是別人的十倍嗎),每個人都覺得工資過低。大家在直覺上會認為,給予金錢獎勵就能夠提升員工的動機,但這個實驗告訴我們,即使是非常簡單的工作,工作動機也會因爲員工的權利意識提升而大幅減弱。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
找到自己的角色定位:矽谷人的遠端工作模式和團隊管理——《矽谷為什麼》
商周出版_96
・2022/07/10 ・3187字 ・閱讀時間約 6 分鐘

  • 專訪胡煜昌/Google 使用者經驗資深經理

跟許多目前在矽谷工作的台灣人一樣,目前在 Google 擔任使用者經驗(UX)資深經理的胡煜昌,畢業於成功大學建築系,在美國哈佛、卡內基美隆大學取得學位後,留在矽谷繼續工作。

從韓國三星到矽谷科技巨擘 Google,從個人工作者到管理職位,胡煜昌覺得台灣人在矽谷的優勢在於說到做到、執行力超強。而「願意分享與溝通」、「成為解決問題的人」、「永遠為自己的工作與團隊多想一步,成為高信任感的夥伴」是他在矽谷能持續得到工作上的成就與晉升的關鍵成功要素。

從韓國三星到矽谷科技巨擘 Google,從個人工作者到管理職位,胡煜昌覺得台灣人在矽谷的優勢在於說到做到、執行力超強。圖/Pexels

胡煜昌指出,疫情前,遠端工作與跨國團隊間合作本來就已經是矽谷科技公司的日常,雖然疫情來得又急又快,但這些基礎架構都已成型,所以對工作的影響其實並不大。疫情剛開始的時候,大家都不覺得會在家工作很久,團隊還會遠距約了一起吃午餐、品酒、運動。

但是,隨著在家工作的時間越來越久,大家也開始習慣這種遠距工作的新常態,展現出人類的韌性。

胡煜昌指出,矽谷公司間的遠距與跨國工作能夠如此自然,在於大家心態上的正確設定,不要有先入為主的想法,文化沒有高低、對錯之分,大家彼此尊重、願意交流相當重要。當然,實體工作也有許多遠距無法取代的優勢,譬如過去大家在偶遇時的討論,快速在用餐時間的交流,都能讓許多沒有在計畫內的事情,高效解決。但是遠距工作後,需要先設定事項,再透過會議正式討論,還要考慮時區的差異,因此,大家在疫情剛開始時的工作時間的確變得更長。現在大家也逐漸習慣用各種即時與非即時的溝通模式提升合作效率,在工作與生活間找到新的平衡。

-----廣告,請繼續往下閱讀-----

分享、溝通與信任是遠距工作的成功祕訣

胡煜昌表示,「分享、溝通與信任」是遠距工作的成功祕訣。要明確地讓別人知道你在做什麼、你想做什麼,透過可視化的 Google 工作檔案,讓團隊清楚了解每個人正在處理的任務,減少誤會產生。譬如團隊中有些在家工作的同事,需要照顧孩子、家人,造成工作有所延誤,也可以開誠布公地表達與溝通。

「分享、溝通與信任」是遠距工作的成功祕訣。圖/Pexels

胡煜昌指出,Google 利用 Google 文件,不但可以分享工作進度,也可以隨時評論,過程中不僅可以高效溝通,更能建立信任感與默契。

主管的存在,在於解決團隊中每個人的問題

胡煜昌表示,主管的團隊管理相當重要,而且主管要有一個正確的認知,了解團隊每個人是主管的重要工作,而主管的主要職責,在於解決每個人的問題,這可以說是耐心與智慧的考驗。

胡煜昌在職場上的升遷與轉職,都遇到了願意教導、願意給機會的好老闆。美國三星是胡煜昌人生中的第一個工作,只花了兩年的時間,便從專業設計工程師晉升到主管。

-----廣告,請繼續往下閱讀-----

過程中除了老闆對他的支持,更提供一對一的教練,一步步帶領他設定目標、激勵員工,並在面對困難的決定時一起討論,找出方法。這為期兩年的訓練,對胡煜昌來說,是絕佳的成長養分。

台灣人在矽谷擁有說到做到、高執行力的優勢,但需要學習的是,如何在工作中建立自己獨特的「角色定位」。很多人一進公司就埋頭做事,但是矽谷文化重視「解決問題的人」,也就是策略性的思考能力,能夠主動出擊並能將個人在產品與組織中的影響力最大化。

胡煜昌說,以主管的角度來看,現在產品開發越來越複雜,主管們往往不能對每一個細節都瞭若指掌,這時候更加依賴團隊,提出建議,進而做出正確的判斷。這時團隊要是有人能適時補上這些不足的地方,甚至成為移開路中大石的那人,就顯得更有價值了。

職場的每一步,隱形信譽的重要累積

台灣在團隊合作上,比較趨向於競爭,但在美國則傾向於發展個人價值的同時,也能尊重彼此專業的合作關係。胡煜昌回想,之前在三星第一個應徵的前端工程師是位初出茅廬的年輕小伙子,當時,在提拔他的同時也在他身上「偷」學到許多前端開發與架構的知識。如今這位當初的年輕人已經是在蘋果獨當一面的軟體開發經理。雙方一直保持聯絡,時常見面交換業界心得。

胡煜昌笑著說,在矽谷應該沒有人會在同一個公司終老。這個產業很小,曾經的上司與同事,幾年後都分別在各大公司任職,套一句俗話:「出來行走江湖,總有一天要還的」。

-----廣告,請繼續往下閱讀-----
美國傾向於發展個人價值的同時,也能尊重彼此專業的合作關係。圖/Pexels

在美國很重視信用(credibility),在工作場域,隱形的信譽,也就是過去的表現,更具有舉足輕重的重要性,想要在美國的職場任職與升遷,「推薦」扮演相當重要的角色,你過去的紀錄與表現,將跟著你一輩子。胡煜昌表示,自己在三星與 Google 的幾次升遷都是受助於幾位上司與同事的大力支持;過去幾年自己也推薦過多位以前的同事與下屬,靠的都是彼此間在專業合作中累積起來的信任。

在 Google 工作很輕鬆嗎?

當胡煜昌決定轉職到 Google,很多人恭喜他換到這麼一個錢多又人性化的工作場域。Google 真的這麼輕鬆嗎?

胡煜昌笑著說,Google 的確是一個沒有人會叫你做什麼的環境,很多人可能會認為,你就把該做的事情做一做就好,薪水也不會比較少。但是,這就取決於個人的職涯規劃,有沒有更上一層樓的打算。

其實,在 Google 花很多時間在找問題、解決問題。不只是自己專案的問題,很多時候更要看到產品甚至是組織上的問題。

-----廣告,請繼續往下閱讀-----
胡煜昌說他在 Google 花很多時間在找問題、解決問題。不只是自己專案的問題,很多時候更要看到產品甚至是組織上的問題。圖/Pexels

或許從上到下、直接命令的做事方式的確比較高效,而 Google 從下而上的管理與工作模式相對耗時,但是在這過程中,展現個人問題解決的能力,在不同想法下互相討論、合作,開創最佳的創意火花,卻是效率所買不到的重要資產。

= I C 筆記/ 詹益鑑=

熟悉 KT 的聽眾與讀者,應該非常容易猜到胡煜昌的身分。對許多 KT 的粉絲來說,胡煜昌就是那個矽谷最幸福、可以嘗到 KT 手藝的矽谷美味人夫(笑)。從我們家兩年多前移居矽谷以來,常受到這個「矽谷美味家庭」的款待,一起度過節日或跟其他朋友在他們家聚餐。除了是一個稱職的男主人,胡煜昌的學霸背景與精彩的業界經歷,也常成為聚餐時的談話主題。

所以這一集訪談,除了是胡煜昌首度出道獻聲之外,更是彷彿在他們家客廳的閒聊(實際上還是遠距錄音,而且應該是三支麥克風)。從三星到 Google 這兩家文化不同的科技公司,從工程師升上管理職的心路歷程與管理心法,還有在疫情之下的居家遠距與跨國工作模式,都是非常有意義的享。而主管最重要的工作是提高每個同仁的效率,最重要的就是解決員工面對的問題(無論是工作上或工作以外),更是我從很多 Google 朋友身上聽到與學到的獨特文化,非常值得台灣的企業經理人與每一個職場上的朋友思考。

——本文摘自《矽谷為什麼:科技、新創、生醫、投資,矽谷直送的最新趨勢與實戰經驗》,2022 年 6 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。