0

0
0

文字

分享

0
0
0

飛碟的牽引波成真!?不過是水中版的拉~

昱夫
・2014/08/11 ・776字 ・閱讀時間約 1 分鐘 ・SR值 517 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

3-physicistscr
Credit: Stuart Hay, ANU

你還記得科幻電影裡,當飛碟要接收物質或人員時,會直接從空中打下一道牽引光束來將目標吸上去嗎?(想想Star trek或是魔神英雄傳的龍王號)而現在,科學家真的做出了一台類似牽引光束的機器,不過是水波的版本~

讓我們先試著思考一下,當波由波源發射,一個在其路徑上的物體會往那裡跑呢?最直覺的想法,通常是物體會順著波前進的方向跟著移動,就像是沙子會被海浪沖上岸,或是衝浪者會順著海浪往岸邊靠一樣;但科幻電影中的牽引光束卻與這樣的想法完全相反,當牽引光束由飛碟發射,被照到的物體反而會像是被吸引般,朝著波源的方向移動。這真的有可能做到嗎?澳洲國立大學(Australian National University, ANU)的Michael Shats團隊設計了一套水波發射裝置,可以實現上面所述,直覺上看似不可能的牽引效果。

在實驗中,他們以乒乓球作為漂浮物,利用簡單的起波器,透過調整頻率和振幅來製造出特殊的波形,進而控制球的漂移方向:

「我們發現,這些複雜的、三維的波,會在水的表面構成特殊的波形。除了可以達到牽引的功能,也可以控制乒乓球往其他方向移動」Michael Shats說道。

目前對於這樣的水波形態研究,尚沒有成熟的數學模型來描述,這點不論對於該研究作者,或是對於筆者來說,都是一件十分驚訝的事。期望在不久的未來可以針對這樣的系統,與其波形移動造成的運動模型,有更加深入詳盡的分析。當我們可以深入了解背後的「為什麼」,才能有效調整其程式設計,創造出各式各樣能讓物質運動的波,進一步應用在,像是收集海上浮油等用途上。

延伸閱讀:

參考資料:Generation and reversal of surface flows by propagating waves, Nature PhysicsDOI: 10.1038/nphys3041

資料來源:Physicists create water tractor beam [PHYS.ORG, August 10, 2014]

文章難易度
昱夫
57 篇文章 ・ 1 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

5
4

文字

分享

2
5
4
能量看不到,那就透過介質來觀察吧!——《物理學的演進》
商周出版_96
・2021/04/17 ・2453字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

  • 作者|Albert Einstein, Leopold Infeld
  • 譯者|王文生

雖然沒有任何實際參與流言散布的人真的在兩個城市間旅行,來自倫敦的小道消息,很快地傳到了愛丁堡。這個過程,涉及兩種截然不同的動作,一種和流言本身有關,從倫敦到愛丁堡;另一種,則要歸咎散播流言的人。一陣風吹過麥田,帶起一道穿過整片田地的麥浪。這一次,我們還是要分清楚波的運動,以及個別植物的運動之間的差異。植物只是稍稍晃動而已。我們曾經看過,把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。

波的運動方式,和水粒子的運動方式相當不同。水粒子只是上下運動。我們觀察到波的運動,是物質的狀態變化,物質本身並不是波。

從水面上的一顆軟木塞就能清楚地見到這個現象。軟木塞上上下下的動作,和水實際上的運動類似,它的運動不是波造成的。

把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。圖/Pexels

為了深入了解波的機制,我們再來考慮一項思想實驗。假設在一個足夠大的空間裡,均勻地被水、空氣,或其他種「介質」填滿。空間的中央處有一個球體。實驗開始時,沒有任何運動。突然,球體開始規律地「呼吸」,體積擴張,然後縮小,在此同時維持球狀的外表。介質會發生什麼變化?我們從球體開始擴張的瞬間開始分析。緊鄰球體的粒子被推開,導致周邊一層球殼狀的水,或是空氣的密度上升,高於正常值。經由類似的過程,球體縮小時,緊鄰球體介質的密度下降了(下圖)。組成介質的粒子只是微幅振動,但是,整體的運動卻是一個行進的波。基本上,我們現在正踏入全新的領域,第一次考慮物質以外的運動,也就是經由物質傳遞的能量產生的運動。

球體縮小時,緊鄰球體介質的密度下降了。圖/《物理學的演進

以脈衝球體為例,我們可以導入定義波的性質時相當重要的兩項普通物理觀念。首先是速度,描述波的傳遞。它和介質有關,例如,波在水和空氣的傳播速度不同。其次是波長 (Wave Length)。在海上或河流傳遞的波,它的波長是從一個波到另一個波距離,或是一個波峰到另一個波峰的距離。因此,海上的波相較於河裡的波具有較大的波長。至於脈衝球體產生的波,波長是在某個固定時間點,兩個密度最大或最小的相鄰球殼之間的距離。很明顯,這個距離不會只和介質有關,脈衝球體縮放的速度顯然對波長有不小的影響。縮放的速度越快,波長越小;縮放速度越快,波長越大。

波的觀念在物理學取得巨大的成功。

波是力學的觀念,這點無庸置疑。波的現象被簡化為粒子的運動,而且根據動力學理論,粒子由物質組成。因此,所有用到波的觀念的理論,一般來說都能視為力學理論。比方說,聲學現象的解釋,基本上建立在波的觀念。物體的振動,像是聲帶和琴弦,是聲波的來源。聲波在空氣中的傳遞模式,和脈衝球體波相同。如此一來,將所有聲學現象透過波的觀念簡化為力學是可能的。

前面已經強調過,我們得清楚地分辨粒子的運動和波的運動,後者是介質的一種狀態。兩種運動差異不小,但是,在脈衝球體的例子,兩種運動顯然發生在同一條直線上。介質粒子在一條短線段上振盪,隨著振盪運動,介質密度週期性地增加和減少。波傳遞的方向,與振盪發生的直線的方向,兩者相同。這種類型的波,稱為縱波 (Longitudinal wave)。但是,波只有這一種形態嗎?為了接下來的討論,我們必須認知到另一種類型的波存在的可能性,稱為橫波 (Transverse wave)。

我們調整一下先前的例子。現在依然有一個球體,但是它浸在一種膠狀介質裡,不是空氣,也不是水。此外,球體不再是縮放,而是朝一個方向旋轉一個小角度,再轉回來。旋轉的節奏是固定的,轉軸也不變。膠狀介質附著在球體周遭,被迫以相同的方式運動(下圖)。一部分的力作用在稍微遠一點的地方,造成該處產生相同的運動,如此一來,介質中就產生一個波。如果我們留意到介質的運動與波的運動之間的差異,會發現它們並不是發生在同一條直線上。波沿著球體的直徑方向傳播,而介質的運動則和這個方向垂直。以此方式,我們造出一個橫波。

膠狀介質附著在球體周遭,被迫以相同的方式運動。圖/《物理學的演進

在水的表面傳遞的波是橫波。漂浮的軟木塞上下浮動,水波則沿著水平面傳遞。另一方面,聲波則是我們最熟悉的縱波範例。

還有一點:脈衝的球體和震動的球體,在同質的均勻介質中製造的是球形波。這是因為在任意時間點,任何圍繞著球體的球殼上的任何一點,行為都是相同的。讓我們考慮位在波源遠處,以波源為球心的球殼上的一個小塊。我們考慮的小塊越小,距離波源越遠,它就越接近一個平面。若不做太嚴謹的考慮,可以說半徑夠大的球殼上的一小部分,和平面其實沒有什麼差距。我們常常把遠離波源的球形波上的一小部分,稱為平面波。如果把下圖著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。平面波的觀念和某些物理觀念很類似,它們是虛構的,無法以完美的精確度製造出來。然而,平面波依然是相當有用的物理觀念,不一會就能派上用場。

著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。圖/《物理學的演進
——本文摘自《物理學的演進》,2021年2月,商周出版。
所有討論 2
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
飛碟的牽引波成真!?不過是水中版的拉~
昱夫
・2014/08/11 ・776字 ・閱讀時間約 1 分鐘 ・SR值 517 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

3-physicistscr
Credit: Stuart Hay, ANU

你還記得科幻電影裡,當飛碟要接收物質或人員時,會直接從空中打下一道牽引光束來將目標吸上去嗎?(想想Star trek或是魔神英雄傳的龍王號)而現在,科學家真的做出了一台類似牽引光束的機器,不過是水波的版本~

讓我們先試著思考一下,當波由波源發射,一個在其路徑上的物體會往那裡跑呢?最直覺的想法,通常是物體會順著波前進的方向跟著移動,就像是沙子會被海浪沖上岸,或是衝浪者會順著海浪往岸邊靠一樣;但科幻電影中的牽引光束卻與這樣的想法完全相反,當牽引光束由飛碟發射,被照到的物體反而會像是被吸引般,朝著波源的方向移動。這真的有可能做到嗎?澳洲國立大學(Australian National University, ANU)的Michael Shats團隊設計了一套水波發射裝置,可以實現上面所述,直覺上看似不可能的牽引效果。

在實驗中,他們以乒乓球作為漂浮物,利用簡單的起波器,透過調整頻率和振幅來製造出特殊的波形,進而控制球的漂移方向:

「我們發現,這些複雜的、三維的波,會在水的表面構成特殊的波形。除了可以達到牽引的功能,也可以控制乒乓球往其他方向移動」Michael Shats說道。

目前對於這樣的水波形態研究,尚沒有成熟的數學模型來描述,這點不論對於該研究作者,或是對於筆者來說,都是一件十分驚訝的事。期望在不久的未來可以針對這樣的系統,與其波形移動造成的運動模型,有更加深入詳盡的分析。當我們可以深入了解背後的「為什麼」,才能有效調整其程式設計,創造出各式各樣能讓物質運動的波,進一步應用在,像是收集海上浮油等用途上。

延伸閱讀:

參考資料:Generation and reversal of surface flows by propagating waves, Nature PhysicsDOI: 10.1038/nphys3041

資料來源:Physicists create water tractor beam [PHYS.ORG, August 10, 2014]

文章難易度
昱夫
57 篇文章 ・ 1 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

0
0

文字

分享

0
0
0
衝啊!音速小子—淺談音爆及光爆
金延儒
・2015/08/11 ・2747字 ・閱讀時間約 5 分鐘 ・SR值 520 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

Sonic
Source: wiki

「誒誒誒!音速小子,快點停,你再衝就要掉下懸崖了啊!!」,在懸崖邊的你緊張的說。

「蛤蛤蛤~~~什麼~~~我聽不清楚你在講什麼!!我的耳膜快破啦!!」,你聽到音速小子在一個他最擅長的360度旋轉的最高點說出這句話,伴隨著巨大的聲響,然後迅速的往下俯衝,略過你……

接著就像迪士尼動畫會有的橋段,他在懸崖外騰空了整整一秒鐘,一聲不響地,華麗退場。

事實上,這是你最後一次聽到他的聲音、見到他的身影。在悲傷的同時,你也想著:「為什麼他不聽我的話呢,為什麼!!!!還有他最後那句話是什麼意思?」

或許,就怪他被稱作「音速」小子吧。

(故事為劇情需要,純屬虛構)

音速小子到底怎麼了?

當然有很多可能導致上面這個故事發生。首先,音速小子可能像很多人一樣習慣邊跑步邊聽音樂,又剛好你叫住他的那一刻因為他放的音樂太大聲讓他耳膜快破了,所以也沒聽到你的聲音,造成悲劇的發生。

但是根據你的說法:那一刻,你聽見了巨大的聲響,大到應該不會是耳機發出來的。那麼我會推斷是因為音速小子正經歷因為超音速所帶來的「音爆」現象。

要了解音爆,我們先來看看超音速的歷史吧。1903年萊特兄弟成功完成了第一次人類的動力飛行,在那一次飛行中,他們用12秒的時間飛行了36.5公尺,時速是每小時10.9公里,這雖然是一個小學生跑步都能追上的速度,但這可是劃時代的重要事件。接著我們把時間快轉到二戰,戰爭的危急狀態讓人類的飛行技術突飛猛進。到戰爭末期,最優良的飛機甚至可以達到時速700公里以上!根據紀錄:當時就有飛行員在俯衝,接近音速飛行時,感受到不穩定的搖晃,甚至也有因此操作失當而機毀人亡的紀錄。

事實上,人類史上第一次的超音速飛行是在1947年10月14日完成的,24歲的查克·葉格(Charles Elwood Yeager)成為第一個飛得比聲音快的人,他在12800公尺的高空,使飛行速度達到每小時1078公里,相當於1.015馬赫[註二][註三]。在當時要突破音速,有許多地方有待當時的科學家突破,其中一項就是音爆的問題。

FA18
FA-18大黃蜂戰機以接近音速的速度飛行 Source: wiki

Sound boom
source: wiki

究竟什麼是音爆呢?簡單來說,音爆就是:當物體的速度,超過它所發出聲音的速度時,周圍的空氣會產生一個壓力非常大的錐狀區域(被稱為馬赫錐),造成氣流的不穩定,然後巨大的壓力差會產生巨大的聲響,就像上圖及左圖的示意圖這樣。順帶一提,子彈飛行產生的聲響也是音爆的例子之一。

哎呀,只不過老實說,超音速飛機與我們的日常生活確實有點遠,可能有點難想像,但其實這個現象在日常生活中也不難觀察到。

從湖面看音速小子的悲劇

大家都有在湖邊玩耍、看看大自然的經驗吧,看著湖面上自由自在悠游的水上動物們,恨不得自己也長了個蹼,能夠跳下去跟著他們一起游泳,把心理的壓力一掃而光。

鴨子游泳產生的水波紋

讓我們觀察一下那隻鴨子身後的水波,事實上,因為鴨子的行進速度比水波的波速還要快,所以在它的後面會有三角狀的水波紋產生。

對應超音速飛機音爆的例子:因為飛機的行進速度比聲波的波速還要快,所以在機身後面會有錐(因為聲波是向四面八方傳遞)狀的衝擊波產生

有沒有覺得兩句話很像呢?確實,以上所說的兩個現象基本上是源於同一個物理概念。

知道了音爆 那你知道還有光爆嗎

光爆聽起來……怎麼那麼……像什麼會把人燒掉的恐怖武器啊!

別亂想。光爆其實就是上面兩個現象的延伸,只不過這次不是發生在聲音,也不是發生在湖面,而是光!

光爆這個現象是由1934年由蘇聯物理學家契忍可夫(Pavel Alekseyevich Cherenkov)發現的,正式的名稱叫做:契忍可夫輻射Cherenkov radiation),有的人會稱呼他為光爆,這種輻射的特點就是:很美的藍色輝光

Cherenkov radiation
Source:Wikipedia

聰明、好奇的你想了一下,說:「你別騙人了,愛因斯坦的狹義相對論告訴我們:一個物體的速度不可能比他所發出來的光還要快!」

事實上,這個現象的確沒有違反愛因斯坦偉大的狹義相對論。只不過他們用了一個小技巧:這個實驗不會是在真空或者是空氣中這些光行進很快的地方進行, 他們把整個實驗放到一些光跑得比較慢的地方(例如在生活中常見的水中,光的行進速度只剩下原本的大約四分之三),如此一來,科學家們就可以利用加速器,把粒子加速到比他自己發出的光還要快的速度,接著才能順利觀察到這個現象。

在金屬表面產生的光爆

surfingawake
Source: phys.org

2014年,哈佛大學的研究團隊又有了新的突破,他們成功製造出跟光爆類似的現象,只不過這次的波是行進在金屬表面,以一種被稱為表面電漿子(Surface plasmons)傳遞,他們把這個現象叫作”Cherenkov surface plasmon wakes”。

這個實驗室的教授,費德里科·卡帕索(Federico Capasso)說:「傳統的光學研究成果讓我們製造出全像圖、Google Glass、 LED燈等等的科技產品;但在未來,奈米光學Nanophotonics)將會是奈米科技的一項重要領域。這次研究成果讓我們更有能力能控制奈米尺度下的光。」

在裡面的研究生,同時也是這篇論文的第一作者丹尼爾(Daniel Wintz)說:「要能夠在比光的波長還小的尺度下控制光是一件非常困難的事情。重要的是我們不但成功製造、觀測到這個現象,更找到了幾個不同的方法來控制它。」

不只是產生這個現象難,就連要觀察也很難,因為事實上,表面電漿子是看不到的,研究團隊必須想辦法把表面電光子從金屬表面“抽”出來,然後經過光纖,才能紀錄到影像。

所以說,其實從水波、聲波一直到光波以及以表面電漿子傳遞的波,這些不同樣貌的現象其實都是同一個物理現象所主導,只是我們平常沒有發現其中的關聯性而已!

備註

  1. 維基百科-萊特兄弟
  2. 1馬赫為一倍的音速,詳見維基百科-馬赫
  3. 這個紀錄有些許爭議,見維基百科-查克·葉格,但不管如何,葉格無庸置疑是第一個在有計劃性、嚴密監控的情況下,靠著飛機自身的動力而實際且確實地突破音障的人類。

參考文獻

  1. Surfing a wake of light: Researchers observe and control light wakes for the first time
  2. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial Nature Nanotechnology [2015]

 

 

金延儒
1 篇文章 ・ 0 位粉絲
編輯實習生,正在辛苦的念電機系。一直不了解自己以及整個世界,所以一直好奇著。雖然身處在一個物質爆炸的時代,但相信人與人之間的情感才是最真實可貴的。