0

0
0

文字

分享

0
0
0

飛碟的牽引波成真!?不過是水中版的拉~

昱夫
・2014/08/11 ・776字 ・閱讀時間約 1 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

3-physicistscr
Credit: Stuart Hay, ANU

你還記得科幻電影裡,當飛碟要接收物質或人員時,會直接從空中打下一道牽引光束來將目標吸上去嗎?(想想Star trek或是魔神英雄傳的龍王號)而現在,科學家真的做出了一台類似牽引光束的機器,不過是水波的版本~

讓我們先試著思考一下,當波由波源發射,一個在其路徑上的物體會往那裡跑呢?最直覺的想法,通常是物體會順著波前進的方向跟著移動,就像是沙子會被海浪沖上岸,或是衝浪者會順著海浪往岸邊靠一樣;但科幻電影中的牽引光束卻與這樣的想法完全相反,當牽引光束由飛碟發射,被照到的物體反而會像是被吸引般,朝著波源的方向移動。這真的有可能做到嗎?澳洲國立大學(Australian National University, ANU)的Michael Shats團隊設計了一套水波發射裝置,可以實現上面所述,直覺上看似不可能的牽引效果。

在實驗中,他們以乒乓球作為漂浮物,利用簡單的起波器,透過調整頻率和振幅來製造出特殊的波形,進而控制球的漂移方向:

「我們發現,這些複雜的、三維的波,會在水的表面構成特殊的波形。除了可以達到牽引的功能,也可以控制乒乓球往其他方向移動」Michael Shats說道。

-----廣告,請繼續往下閱讀-----

目前對於這樣的水波形態研究,尚沒有成熟的數學模型來描述,這點不論對於該研究作者,或是對於筆者來說,都是一件十分驚訝的事。期望在不久的未來可以針對這樣的系統,與其波形移動造成的運動模型,有更加深入詳盡的分析。當我們可以深入了解背後的「為什麼」,才能有效調整其程式設計,創造出各式各樣能讓物質運動的波,進一步應用在,像是收集海上浮油等用途上。

延伸閱讀:

參考資料:Generation and reversal of surface flows by propagating waves, Nature PhysicsDOI: 10.1038/nphys3041

資料來源:Physicists create water tractor beam [PHYS.ORG, August 10, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

2

5
4

文字

分享

2
5
4
能量看不到,那就透過介質來觀察吧!——《物理學的演進》
商周出版_96
・2021/04/17 ・2453字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者|Albert Einstein, Leopold Infeld
  • 譯者|王文生

雖然沒有任何實際參與流言散布的人真的在兩個城市間旅行,來自倫敦的小道消息,很快地傳到了愛丁堡。這個過程,涉及兩種截然不同的動作,一種和流言本身有關,從倫敦到愛丁堡;另一種,則要歸咎散播流言的人。一陣風吹過麥田,帶起一道穿過整片田地的麥浪。這一次,我們還是要分清楚波的運動,以及個別植物的運動之間的差異。植物只是稍稍晃動而已。我們曾經看過,把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。

波的運動方式,和水粒子的運動方式相當不同。水粒子只是上下運動。我們觀察到波的運動,是物質的狀態變化,物質本身並不是波。

從水面上的一顆軟木塞就能清楚地見到這個現象。軟木塞上上下下的動作,和水實際上的運動類似,它的運動不是波造成的。

把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。圖/Pexels

為了深入了解波的機制,我們再來考慮一項思想實驗。假設在一個足夠大的空間裡,均勻地被水、空氣,或其他種「介質」填滿。空間的中央處有一個球體。實驗開始時,沒有任何運動。突然,球體開始規律地「呼吸」,體積擴張,然後縮小,在此同時維持球狀的外表。介質會發生什麼變化?我們從球體開始擴張的瞬間開始分析。緊鄰球體的粒子被推開,導致周邊一層球殼狀的水,或是空氣的密度上升,高於正常值。經由類似的過程,球體縮小時,緊鄰球體介質的密度下降了(下圖)。組成介質的粒子只是微幅振動,但是,整體的運動卻是一個行進的波。基本上,我們現在正踏入全新的領域,第一次考慮物質以外的運動,也就是經由物質傳遞的能量產生的運動。

球體縮小時,緊鄰球體介質的密度下降了。圖/《物理學的演進

以脈衝球體為例,我們可以導入定義波的性質時相當重要的兩項普通物理觀念。首先是速度,描述波的傳遞。它和介質有關,例如,波在水和空氣的傳播速度不同。其次是波長 (Wave Length)。在海上或河流傳遞的波,它的波長是從一個波到另一個波距離,或是一個波峰到另一個波峰的距離。因此,海上的波相較於河裡的波具有較大的波長。至於脈衝球體產生的波,波長是在某個固定時間點,兩個密度最大或最小的相鄰球殼之間的距離。很明顯,這個距離不會只和介質有關,脈衝球體縮放的速度顯然對波長有不小的影響。縮放的速度越快,波長越小;縮放速度越快,波長越大。

-----廣告,請繼續往下閱讀-----

波的觀念在物理學取得巨大的成功。

波是力學的觀念,這點無庸置疑。波的現象被簡化為粒子的運動,而且根據動力學理論,粒子由物質組成。因此,所有用到波的觀念的理論,一般來說都能視為力學理論。比方說,聲學現象的解釋,基本上建立在波的觀念。物體的振動,像是聲帶和琴弦,是聲波的來源。聲波在空氣中的傳遞模式,和脈衝球體波相同。如此一來,將所有聲學現象透過波的觀念簡化為力學是可能的。

前面已經強調過,我們得清楚地分辨粒子的運動和波的運動,後者是介質的一種狀態。兩種運動差異不小,但是,在脈衝球體的例子,兩種運動顯然發生在同一條直線上。介質粒子在一條短線段上振盪,隨著振盪運動,介質密度週期性地增加和減少。波傳遞的方向,與振盪發生的直線的方向,兩者相同。這種類型的波,稱為縱波 (Longitudinal wave)。但是,波只有這一種形態嗎?為了接下來的討論,我們必須認知到另一種類型的波存在的可能性,稱為橫波 (Transverse wave)。

我們調整一下先前的例子。現在依然有一個球體,但是它浸在一種膠狀介質裡,不是空氣,也不是水。此外,球體不再是縮放,而是朝一個方向旋轉一個小角度,再轉回來。旋轉的節奏是固定的,轉軸也不變。膠狀介質附著在球體周遭,被迫以相同的方式運動(下圖)。一部分的力作用在稍微遠一點的地方,造成該處產生相同的運動,如此一來,介質中就產生一個波。如果我們留意到介質的運動與波的運動之間的差異,會發現它們並不是發生在同一條直線上。波沿著球體的直徑方向傳播,而介質的運動則和這個方向垂直。以此方式,我們造出一個橫波。

膠狀介質附著在球體周遭,被迫以相同的方式運動。圖/《物理學的演進

在水的表面傳遞的波是橫波。漂浮的軟木塞上下浮動,水波則沿著水平面傳遞。另一方面,聲波則是我們最熟悉的縱波範例。

-----廣告,請繼續往下閱讀-----

還有一點:脈衝的球體和震動的球體,在同質的均勻介質中製造的是球形波。這是因為在任意時間點,任何圍繞著球體的球殼上的任何一點,行為都是相同的。讓我們考慮位在波源遠處,以波源為球心的球殼上的一個小塊。我們考慮的小塊越小,距離波源越遠,它就越接近一個平面。若不做太嚴謹的考慮,可以說半徑夠大的球殼上的一小部分,和平面其實沒有什麼差距。我們常常把遠離波源的球形波上的一小部分,稱為平面波。如果把下圖著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。平面波的觀念和某些物理觀念很類似,它們是虛構的,無法以完美的精確度製造出來。然而,平面波依然是相當有用的物理觀念,不一會就能派上用場。

著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。圖/《物理學的演進
——本文摘自《物理學的演進》,2021年2月,商周出版。
所有討論 2
商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
衝啊!音速小子—淺談音爆及光爆
金延儒
・2015/08/11 ・2747字 ・閱讀時間約 5 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

Sonic
Source: wiki

「誒誒誒!音速小子,快點停,你再衝就要掉下懸崖了啊!!」,在懸崖邊的你緊張的說。

「蛤蛤蛤~~~什麼~~~我聽不清楚你在講什麼!!我的耳膜快破啦!!」,你聽到音速小子在一個他最擅長的360度旋轉的最高點說出這句話,伴隨著巨大的聲響,然後迅速的往下俯衝,略過你……

接著就像迪士尼動畫會有的橋段,他在懸崖外騰空了整整一秒鐘,一聲不響地,華麗退場。

-----廣告,請繼續往下閱讀-----

事實上,這是你最後一次聽到他的聲音、見到他的身影。在悲傷的同時,你也想著:「為什麼他不聽我的話呢,為什麼!!!!還有他最後那句話是什麼意思?」

或許,就怪他被稱作「音速」小子吧。

(故事為劇情需要,純屬虛構)

音速小子到底怎麼了?

當然有很多可能導致上面這個故事發生。首先,音速小子可能像很多人一樣習慣邊跑步邊聽音樂,又剛好你叫住他的那一刻因為他放的音樂太大聲讓他耳膜快破了,所以也沒聽到你的聲音,造成悲劇的發生。

-----廣告,請繼續往下閱讀-----

但是根據你的說法:那一刻,你聽見了巨大的聲響,大到應該不會是耳機發出來的。那麼我會推斷是因為音速小子正經歷因為超音速所帶來的「音爆」現象。

要了解音爆,我們先來看看超音速的歷史吧。1903年萊特兄弟成功完成了第一次人類的動力飛行,在那一次飛行中,他們用12秒的時間飛行了36.5公尺,時速是每小時10.9公里,這雖然是一個小學生跑步都能追上的速度,但這可是劃時代的重要事件。接著我們把時間快轉到二戰,戰爭的危急狀態讓人類的飛行技術突飛猛進。到戰爭末期,最優良的飛機甚至可以達到時速700公里以上!根據紀錄:當時就有飛行員在俯衝,接近音速飛行時,感受到不穩定的搖晃,甚至也有因此操作失當而機毀人亡的紀錄。

事實上,人類史上第一次的超音速飛行是在1947年10月14日完成的,24歲的查克·葉格(Charles Elwood Yeager)成為第一個飛得比聲音快的人,他在12800公尺的高空,使飛行速度達到每小時1078公里,相當於1.015馬赫[註二][註三]。在當時要突破音速,有許多地方有待當時的科學家突破,其中一項就是音爆的問題。

FA18
FA-18大黃蜂戰機以接近音速的速度飛行 Source: wiki

-----廣告,請繼續往下閱讀-----

Sound boom
source: wiki

究竟什麼是音爆呢?簡單來說,音爆就是:當物體的速度,超過它所發出聲音的速度時,周圍的空氣會產生一個壓力非常大的錐狀區域(被稱為馬赫錐),造成氣流的不穩定,然後巨大的壓力差會產生巨大的聲響,就像上圖及左圖的示意圖這樣。順帶一提,子彈飛行產生的聲響也是音爆的例子之一。

哎呀,只不過老實說,超音速飛機與我們的日常生活確實有點遠,可能有點難想像,但其實這個現象在日常生活中也不難觀察到。

從湖面看音速小子的悲劇

大家都有在湖邊玩耍、看看大自然的經驗吧,看著湖面上自由自在悠游的水上動物們,恨不得自己也長了個蹼,能夠跳下去跟著他們一起游泳,把心理的壓力一掃而光。

-----廣告,請繼續往下閱讀-----

鴨子游泳產生的水波紋

讓我們觀察一下那隻鴨子身後的水波,事實上,因為鴨子的行進速度比水波的波速還要快,所以在它的後面會有三角狀的水波紋產生。

對應超音速飛機音爆的例子:因為飛機的行進速度比聲波的波速還要快,所以在機身後面會有錐(因為聲波是向四面八方傳遞)狀的衝擊波產生

有沒有覺得兩句話很像呢?確實,以上所說的兩個現象基本上是源於同一個物理概念。

-----廣告,請繼續往下閱讀-----

知道了音爆 那你知道還有光爆嗎

光爆聽起來……怎麼那麼……像什麼會把人燒掉的恐怖武器啊!

別亂想。光爆其實就是上面兩個現象的延伸,只不過這次不是發生在聲音,也不是發生在湖面,而是光!

光爆這個現象是由1934年由蘇聯物理學家契忍可夫(Pavel Alekseyevich Cherenkov)發現的,正式的名稱叫做:契忍可夫輻射Cherenkov radiation),有的人會稱呼他為光爆,這種輻射的特點就是:很美的藍色輝光

Cherenkov radiation
Source:Wikipedia

-----廣告,請繼續往下閱讀-----

聰明、好奇的你想了一下,說:「你別騙人了,愛因斯坦的狹義相對論告訴我們:一個物體的速度不可能比他所發出來的光還要快!」

事實上,這個現象的確沒有違反愛因斯坦偉大的狹義相對論。只不過他們用了一個小技巧:這個實驗不會是在真空或者是空氣中這些光行進很快的地方進行, 他們把整個實驗放到一些光跑得比較慢的地方(例如在生活中常見的水中,光的行進速度只剩下原本的大約四分之三),如此一來,科學家們就可以利用加速器,把粒子加速到比他自己發出的光還要快的速度,接著才能順利觀察到這個現象。

在金屬表面產生的光爆

surfingawake
Source: phys.org

2014年,哈佛大學的研究團隊又有了新的突破,他們成功製造出跟光爆類似的現象,只不過這次的波是行進在金屬表面,以一種被稱為表面電漿子(Surface plasmons)傳遞,他們把這個現象叫作”Cherenkov surface plasmon wakes”。

-----廣告,請繼續往下閱讀-----

這個實驗室的教授,費德里科·卡帕索(Federico Capasso)說:「傳統的光學研究成果讓我們製造出全像圖、Google Glass、 LED燈等等的科技產品;但在未來,奈米光學Nanophotonics)將會是奈米科技的一項重要領域。這次研究成果讓我們更有能力能控制奈米尺度下的光。」

在裡面的研究生,同時也是這篇論文的第一作者丹尼爾(Daniel Wintz)說:「要能夠在比光的波長還小的尺度下控制光是一件非常困難的事情。重要的是我們不但成功製造、觀測到這個現象,更找到了幾個不同的方法來控制它。」

不只是產生這個現象難,就連要觀察也很難,因為事實上,表面電漿子是看不到的,研究團隊必須想辦法把表面電光子從金屬表面“抽”出來,然後經過光纖,才能紀錄到影像。

所以說,其實從水波、聲波一直到光波以及以表面電漿子傳遞的波,這些不同樣貌的現象其實都是同一個物理現象所主導,只是我們平常沒有發現其中的關聯性而已!

備註

  1. 維基百科-萊特兄弟
  2. 1馬赫為一倍的音速,詳見維基百科-馬赫
  3. 這個紀錄有些許爭議,見維基百科-查克·葉格,但不管如何,葉格無庸置疑是第一個在有計劃性、嚴密監控的情況下,靠著飛機自身的動力而實際且確實地突破音障的人類。

參考文獻

  1. Surfing a wake of light: Researchers observe and control light wakes for the first time
  2. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial Nature Nanotechnology [2015]

 

 

金延儒
1 篇文章 ・ 0 位粉絲
編輯實習生,正在辛苦的念電機系。一直不了解自己以及整個世界,所以一直好奇著。雖然身處在一個物質爆炸的時代,但相信人與人之間的情感才是最真實可貴的。

0

0
0

文字

分享

0
0
0
物理學家雙人組利用二道 Bessel 射束創造出牽引光束
only-perception
・2012/11/06 ・843字 ・閱讀時間約 1 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

紐約大學的 David Ruffner 與 David Grier 已開發出一種技術,利用 Bessel 射束(Bessel beams)將一個粒子朝來源拉過去。在他們發表於 Physical Review Letters 的論文中,他們描述如何使用他們的技術,將大小為 30 微米、懸浮在水中的二氧化矽球體拉向一個雷射光源。

一種利用能量將一物體朝光源拉過去的裝置因知名 Star Trek 中的虛構技術而被稱為「牽引光束(tractor beam)」。此類裝置迄今尚不存在,但 Ruffner 與 Grier 所完成的這項新研究證明,那是有可能辦到的!他們的研究是基於某種形態的雷射,稱為 Bessel 光束(譯註:Bessel 射束也可以是聲音輻射或重力輻射)。

Bessel 光束,以其創造者 Friedrich Bessel 為名,是某種雷射,那將光引導成圍繞某一單點的同心圓,而非成為一道光束。不像一般的雷射光束,來自 Bessel 光束,在其光點上的光不會繞射(diffracted,衍射),而且因為此光點是由來自同心圓的光所形成,如果它遇到路徑中的某一物體, 它能夠再形成(reform)(光點)。該團隊發現,此特性讓它夠拉動一粒子。

去年,一支中國的研究團隊算出,有可能將 Bessel 光束指向一粒子並以下列方式微調之:使光擊中前端後再形成,再成形然後擊中後端(to have the light that reforms after striking the front end, reform and strike the back end),那在理論上應當將粒子往回推向光源。最後結果看起來應該像是一道牽引光束。

-----廣告,請繼續往下閱讀-----

在發現他們無法將 Bessel 光束調整到需要移動一粒子的程度後,Ruffner 與 Grier 試圖使用二道 Bessel 光束 — 以一個透鏡使光束稍微彎曲,導致它們重疊。那導致一種閃光燈效應(strobe effect,頻閃效應),光在粒子後端交替亮、滅,提供足夠能量將它朝原光源回推。最終結果是一套設備,以人眼觀看時,會產生把粒子朝來源裝置拉過來的錯覺,換言之一道牽引光束。

這兩人所建造的牽引光束將需要很多很多能量才能擴大到允許移動大型物體,而且如果這樣的裝置被造出來後,很可能在牽引過程中就會將這些物體摧毀。但那確實暗示,若使用其他能量強度較少的光源,這樣的裝置也許有可能會成真。

資料來源:Physics duo create tractor beam using dual Bessel beams. Phys.org [October 22, 2012]

轉載自 only perception

-----廣告,請繼續往下閱讀-----
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D