Loading [MathJax]/extensions/tex2jax.js

0

18
0

文字

分享

0
18
0

化繁為簡,只有作用力與物質距離的世界——《物理學的演進》

商周出版_96
・2021/04/15 ・2066字 ・閱讀時間約 4 分鐘 ・SR值 561 ・九年級

  • 作者|Albert Einstein, Leopold Infeld
  • 譯者|王文生

科學研究的結果,常促使哲學改變看待問題的方式,這就遠遠超出科學有限的範疇。

科學的目標是什麼?嘗試描述自然的理論,要符合哪些要求?這些問題雖然超出物理的界線,兩者卻有緊密的關連,因為科學正是構成這些問題的材料。科學在哲學上的推演,必須奠基於科學結果。一旦哲學推演得到多數認同,它們也常指出幾條可能的發展方向,影響科學思想的進步。主流觀念的重大變革會產生全然不同的、出乎意料的進展,成為新哲學觀點的源頭。這些評論聽起來空泛又毫無意義,我們得引用物理史的實例說明才行。

我們試著描述第一個論及科學目的的哲學觀點。這些觀點對物理發展一直維持重要的影響力,直到 100 年前,新的證據、現象和理論促使人們放棄舊的哲學觀點,讓科學有了伸展拳腳的新空間。

科學的歷史,從希臘哲學到近代物理,人們不斷追求將看似複雜的自然現象簡化為簡單的基本觀念,並將觀念連結起來。這是所有自然哲學背後的基本原則。這個原則,甚至在原子論者的著作裡都能看見。早在 23 個世紀以前,德謨克利特(Democritus,前 460 – 前 370)就寫道:

我們習慣把甜稱為甜,習慣把苦稱為苦,把熱稱為熱,冷稱為冷。但是,現實中只有原子和虛無。也就是說,雖然感官的對象應該是真實的,人們一般也這麼認為,但是,它們實際上並非真實。只有原子和虛無是真實的。

雖然感官的對象應該是真實的,人們一般也這麼認為,但是,它們實際上並非真實。只有原子和虛無是真實的。圖/Pixabay

它只是古代哲學中一個巧妙的想像力產物。連結一連串事件的自然定律,對希臘人來說還是未知。將理論與實驗結合的科學,從伽利略的工作才算有個起頭。在第一條線索的指引下,我們找到運動定律。200 年來,有關力與物質的科學研究,是人類探索自然的努力背後的骨幹。我們無法想像少了力與物質任何一項的自然。因為物質作為力的來源,作用在其他物質上,藉此展現本身的存在。

-----廣告,請繼續往下閱讀-----

讓我們考慮最單純的例子:某個力作用在兩個粒子間。最容易想像的是引力和斥力。不管哪一種情形,力的向量都位在兩個物質構成的點的連線上。為求簡潔,自然會想到兩粒子互相吸引或排斥的圖像。若假設力作用在其他方向,圖像會複雜不少。在此之上,針對力向量的長度,我們能再加一條同樣單純的假設嗎?儘管我們有意避開太特殊的假設,加上這條也無傷大雅:任意兩粒子之間的力,只和兩者距離有關,例如重力。看起來,它也夠單純。更加複雜的作用力也不難想像,像是有些不只受距離影響,也和兩粒子速度有關的作用力。

使用物質和力作為基礎觀念的話,我們很難想像比作用在粒子連線上,只受距離影響的力更單純的假設。但是,單靠這一種作用力,足以描述所有物理現象嗎?

粒子互相吸引或排斥的圖像。圖/《物理學的演進

力學在衍生領域的偉大成就,像天文領域驚人的進展,甚至乍看之下不屬於力學的問題,其實也能套用力學觀念。這些成功加深了人們的信念,只要用不可改變的物體之間單純的作用力,就能解釋所有自然現象。從伽利略以降,兩個世紀間,幾乎所有的科學產物都有意或無意地朝這個方向努力。19 世紀中,亥姆霍玆 (Hermann von Helmholtz,1821-1894) 把這項信念化為文字:

終於,我們發現,物質的物理科學是將自然現象轉換為不可變動的吸力與斥力,其強度只和距離有關。這個問題的解答,是完全理解自然的必要條件。

根據亥姆霍玆的說法,科學的發展路徑已經確定,往後將分毫不差地走向固定方向:

-----廣告,請繼續往下閱讀-----

不僅如此,只要所有自然現象都能化簡為單純的力,並且到證據,證明它是簡化現象的唯一途徑,科學工作將迎來終點。

在 20 世紀的物理學家眼中,這個想法既笨拙又天真。他可能不敢想像偉大的探索工作能如此順利地結束,而且也會因為可靠的宇宙圖像就此定案而感到興趣索然。

雖然早期物理學家相信,所有的現象都能縮減成單純的作用力,他們還是留下為何力和距離有關的問題。在不同現象,力隨距離的改變程度有可能不同。為了不同狀況,而引入多種類的力,以哲學觀點來看不能說是盡善盡美。儘管如此,所謂的機械論 (mechanical view),主要由亥姆霍玆清楚定義,在當時扮演著重要的角色。物質的動力理論方面的進步,是機械論影響下最偉大的成就之一。

談到機械論的衰退前,我們暫時先接受這個上一個世紀的物理學家之間的主流觀點,看看以這個外在世界的圖像為出發點,能得出什麼結論。

——本文摘自《物理學的演進》,2021年2月,商周出版。
-----廣告,請繼續往下閱讀-----
文章難易度
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

4
8

文字

分享

2
4
8
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

-----廣告,請繼續往下閱讀-----

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

-----廣告,請繼續往下閱讀-----

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

-----廣告,請繼續往下閱讀-----

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

-----廣告,請繼續往下閱讀-----
精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

-----廣告,請繼續往下閱讀-----
克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

-----廣告,請繼續往下閱讀-----

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

-----廣告,請繼續往下閱讀-----
全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 2