1

7
1

文字

分享

1
7
1

電生磁,磁生電,就讓場論來說明吧!——《物理學的演進》

商周出版_96
・2021/04/18 ・2811字 ・閱讀時間約 5 分鐘 ・SR值 540 ・八年級
  • 作者|Albert Einstein, Leopold Infeld
  • 譯者|王文生

電場的變化,伴隨磁場的產生。」如果我們把「電場」和「磁場」的位置交換,剛剛的句子變成:「磁場的變化,伴隨電場的產生。」只有實驗才能確定這個敘述是否屬實。不過,這個問題是透過場的語言組織而成。

100 多年前,法拉第做了一個實驗,結果是感應電流的偉大發現。演示的過程很簡單。我們只要準備一根螺旋管,一根棒狀磁鐵,還有一個檢測電流存在的儀器,這種儀器有很多種。開始時,讓螺旋管形成一個封閉電路,再把棒狀磁鐵放在靠近螺旋管的地方,保持靜止(下圖)。導線上沒有電流,因為沒有源頭產生電流。現在只有棒狀磁鐵的磁場,不隨時間改變。現在,我們很快改變磁鐵的位置,隨喜好讓它靠近或遠離螺旋管。在這個時間點,會產生一個電流,持續時間非常短,隨即消失。當磁鐵的位置改變,電流就會出現,而且可以被足夠敏感的儀器偵測到。但是一個電流—從場論的角度看來—代表一個電場存在,迫使電流體在導線上移動。電流及電場,在磁鐵再次靜止時會消失。

螺旋管形成一個封閉電路,再把棒狀磁鐵放在靠近螺旋管的地方,保持靜止。圖/《物理學的演進

想像一下,如果場的語言還是未知,我們必須用機械論的舊有觀念,也即定性和定量地描述這個實驗結果。那麼,我們的實驗結果顯示:因為磁極的運動,創造出一個新的力,使電流體在導線上移動。下個問題是:這個力和什麼有關?這會是很難回答的問題。我們得研究力與磁鐵速度的關係,以及力與磁鐵形狀、電路形狀的關係。不僅如此,如果用舊有語言詮釋這個實驗,我們完全沒有線索能推測,如果不是棒狀磁鐵,另一個通電的電路是否能引起感應電流。

法拉第鐵圈實驗室意圖:左邊線圈通磁量的改變,會在右邊線圈感應出電流。圖/Wikipedia

如果用場的語言,事情會變得很不一樣。我們再次相信我們的原理,也就是場可以決定作用。我們見過一次,通電的螺旋管的作用與棒狀磁鐵類似。下圖畫出兩根螺旋管,一根較小,並帶有電流;另一根較大,我們偵測到它帶有感應電流。就像我們之前移動棒狀磁鐵,我們可以移動小螺旋管,在大螺旋管上製造一個感應電流。不僅如此,即使不移動小螺旋管,我們也能透過創造和消滅電流的方式,也就是接通或斷開電路,藉此創造或消滅磁場。場論預期的新現象,再次被實驗證實!

畫出兩根螺旋管,一根較小,並帶有電流;另一根較大,我們偵測到它帶有感應電流。圖/《物理學的演進

我們看一個更簡單的例子。有一條封閉的導線,上面沒有任何電流的源頭。導線的附近有一個磁場。這個磁場來自另一個通電的電路,或是某個棒狀磁鐵,對我們來說並不重要。我們的下圖,畫有封閉電路和磁場的力線。透過場的語言,感應現象的定性與定量描述會非常簡單。如同圖中所繪,有些力線穿過了導線圍繞範圍內的平面,我們必須考慮穿過該平面的力線。不論場的強度有多大,只要場沒有變化,就不會有電流。但是,只要穿越導線圍繞範圍內的平面的力線數量有所變化,環狀的導線上就開始有電流通過。電流由穿越平面的力線的數量變化所決定,不論數量變化的原因為何。力線數量的變化,是感應電流的定性與定量描述中唯一的必要觀念。「力線數量的變化」,代表力線密度的改變,我們也記得,力線密度的變化,其實就是場的強度變化。

畫有封閉電路和磁場的力線。透過場的語言,感應現象的定性與定量描述會非常簡單。圖/《物理學的演進

接下來,是我們的論證鏈中必要的論點:磁場變化→感應電流→電荷移動→某個電場存在。

因此:一個變化中的磁場,伴隨著一個電場。

於是,我們發現兩個電場和磁場理論中最重要的兩根支柱。第一,是電場的變化和磁場的連結。這是從厄斯特針對磁針偏轉的實驗產生的結果,實驗的結論是:一個變化中的電場,伴隨著一個磁場。

第二根支柱連結了變化中的磁場與感應電流,是法拉第的實驗得出的結果。兩根支柱,都成為量化描述的基礎。

又一次,伴隨變化的磁場產生的電場,似乎是某種真實的東西。我們必須想像,先前電流的磁場存在於沒有測試磁極的狀況。同樣的,我們必須宣稱,在測試導線上的感應電流不存在的狀況下,電場依然存在。

事實上,我們的雙支柱架構可以簡化成只有一根支柱,也就是從厄斯特的實驗得到的結果。法拉第的實驗結果,可以從第一根支柱,加上能量守恆定律推導出來。我們之所以使用兩根支柱的架構,只是為了清楚和有效率地表達。

應該再提一下場的描述產生的另一個結果。有一個通有電流的電路,電流來自伏特電池,舉例來說,導線和電流的來源突然被分開。現在當然就沒有電流了!但是,在為時短暫的分離之中,發生了一個有趣的過程。場論再次預期到這個過程的發生。在電流斷開前,有一個環繞導線的磁場。在電流斷開的瞬間,這個磁場也消失了。因此,有一個磁場經由斷開電流而消失。穿過導線圍繞的平面的力線數量,發生了快速的變化。但是這個快速變化,不論產生的原因為何,必須創造一個感應電流。實際上更重要的是,如果磁場的變化越大,感應電流也將隨之增強。這個結果是測試場論的另一個機會。斷開電流時,必定伴隨另一個更強、暫時產生的感應電流。實驗又一次證實了這個預測。每一個嘗試斷開電流的人,一定有注意到產生的火花。這個火花展現的是快速的磁場變化所造成的巨大電位差。

同樣的過程可以用另一個角度檢視,能量的角度。磁場消失,一個火花產生。火花代表能量,因此磁場也必須如此。為了在使用場的觀念和語言時,保持物理定律的一致性,我們必須把磁場視為能量的保存地點。只有這個辦法,我們才能在描述電與磁的現象時遵守能量守恆定律。

剛開始,場只是有用的模型,後來變得越來越真實。我們透過場了解了舊現象,它也帶我們發現新的。更進一步,是能量和場的整合,場的觀念又一次被強調;同時,對機械觀來說,至關重要的物質的觀念之重要性,日漸下降。

——本文摘自《物理學的演進》,2021年2月,商周出版。

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 1

2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook