1

1
0

文字

分享

1
1
0

手槍蝦的閃光音爆槍!

Scimage
・2011/01/28 ・522字 ・閱讀時間約 1 分鐘 ・SR值 505 ・六年級

你不會想惹手槍蝦的超強空氣槍!

產生光有很多種方式,不過在生物上大約就是螢光跟磷光,一般常見像是燃燒利用電漿離子發光的機會幾乎沒有。不過這樣難得的現象在幾年前被一種特殊的生物打破了,那就是手槍蝦。

手槍蝦的補食方式是利用先施力在螯的彈性組織上儲存彈力,然後一下子放出,讓螯口閉合,在這同時可以射出一條水柱。在流體中,當速度很快的時候,局部的壓力就會變小,因為壓力變小,局部就會有氣泡因為壓力太小而被引發出來(稱為空穴化)。

這樣被引發出來的氣泡很不穩定,當流速下降以後就會塌陷。因為表面張力所造成的壓力差反比於氣泡的半徑,所以當縮的越小的時候表面張力帶來的壓力反而越大,所以氣泡被不斷的加速壓縮。這種加速的方式就如同音爆一樣。最後因為氣泡縮小的太快,對裡面的氣體進行絕熱壓縮,讓裡面的氣體溫度升高到數千度,直接變成電漿發生電離,然後就發出光了。

當然這樣的光不是這蝦子的目的,氣泡的攤縮音爆才是。這種音爆可以震昏牠的獵物,然後就可以拖回家了;這些物理知識也許蝦子不懂,不過自然卻已經教會牠如何使用,在牠身上演化出一種人想像不到的閃光音爆槍!

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
船艦航行需克服的「空蝕現象」,是鼓蝦的攻擊技能!——《神奇物理學》
商周出版_96
・2022/10/16 ・1622字 ・閱讀時間約 3 分鐘

小小身軀能發出威力無比強大的巨響

有些動物會利用空蝕現象來捕抓獵物或抵禦攻擊者,鼓蝦(Pistol Shrimp)是最好的例子。這種 5 公分長的蝦科動物也被稱為手槍蝦,只因為牠會把敵人打倒。

牠可以用那對手槍螯發出比噴射機還大的聲音,大約是200 分貝,這讓牠成為世界上聲音最大的動物。小動物聽到會昏倒,較大的攻擊者也會迅速逃跑,就算是潛水艇的聲納設備也會被破壞。手槍蝦之所以能發出這麼大的聲音,是因為空蝕現象,牠會忽然用力合上手槍螯,朝攻擊者射出一股水流,這股水流後面會形成水蒸氣,並隨著一聲巨響而內爆。

槍蝦科(Alpheidae);其特徵為兩邊不對稱的螯,較大的那側可發出如槍聲般的巨響。圖/維基百科

有趣的是,手槍蝦可能根本就聽不到大爆炸的聲音。研究人員沒發現蝦子具有聽力器官,這點也許對瘋狂大爆炸會更好。

除此之外,手槍蝦不只會用螯產生轟雷聲,還會產生閃電,當空氣泡內爆時,會釋放很多能量,所以會出現「聲致發光」(Sonoluminescence)的現象,也就是當液體受到強烈壓力波動時,所發出的光效應。可惜的是,人類無法用肉眼看到閃電,但如果你可以利用相機超慢動作動態攝影的功能來拍攝手槍蝦,這樣就能看到聲致發光的現象。這看起來真的非常不可思議!發現這種效應的人非常高興,甚至將這效應稱為「蝦發光」(Shrimpoluminescence)。

-----廣告,請繼續往下閱讀-----

總而言之,手槍蝦是種非常迷人的動物,可以單獨替牠寫出一整本書,私底下牠也是很喜歡社交的,喜愛和小魚或海葵一起生活,也經常和帶條紋的蝦虎魚一同住在山洞裡。

手槍蝦會整天待在洞裡,沒有敵人來襲時蝦虎魚會在洞口游來游去,但要是有章魚在附近游來游去,蝦虎魚就會飛快游回洞穴,並害怕發抖,然後就是手槍蝦表現的時候了,牠會衝出山洞,伸出螯砸向攻擊者。

手槍蝦與牠的蝦虎魚小夥伴。圖/維基百科

如果牠在戰鬥中輸了,把螯弄斷了,牠只要修復自己就好了,另一邊的正常螯還是可以攻擊,而斷掉的螯會再重新長出來。

船艦該如何克服空蝕現象

手槍蝦那麼強大的自癒力對「勇敢號驅逐艦」這種艦艇來說當然不可能有。

-----廣告,請繼續往下閱讀-----

1893 年,艦艇上的工程師不得不在這裡與有破壞力的空蝕作用鬥智,他們成功了!這艘艦艇沒有轉動很快的大螺旋槳了,而是幾個較小的螺旋槳,功率也稍小,這樣水流就沒有那麼快,空蝕現象也減少了。

就這樣,這艘船艦最後能以 32 節的速度出海航行,在 19 世紀末,這個速度的確非常快,報紙終於稱它為「世界上最快的船艦」,工程師們對此感到很滿意。

後來,他們只改變了一件事,就是在船頭安裝了一個魚雷發射管,可以朝敵方艦艇射擊。但這後來被證明是不切實際的,因為「勇敢號驅逐艦」現在的速度超級快,根本已經有可能超過它自己魚雷的速度了。

這已經是一百多年前的事了,現在有許多巧妙的解決方法,可以保護船隻免受空蝕現象損壞。

-----廣告,請繼續往下閱讀-----

有些螺旋槳的設計會讓空氣從它的邊緣流出去,那些小氣泡的作用就會像阻尼器一樣,當水在螺旋槳後面流動過快且壓力過低時,氣泡就會膨脹,進而防止形成空氣泡。這個技術對軍艦也很有用,因為可以讓船艦變得更安靜,就如同我們從手槍蝦身上知道的那樣,氣泡破裂的聲音非常大,這樣會害船隻被敵人的聲納定位到。

——本文摘自《神奇物理學:從重力到電流,日常中的科學現象原來是這麼回事!》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

2
0

文字

分享

0
2
0
2015《nature》年度照片大賞
梁晏慈
・2015/12/30 ・3033字 ・閱讀時間約 6 分鐘 ・SR值 494 ・六年級

2015年即將結束,讓我們一起來看看由自然《Nature》選出的年度精選照片吧!

爬蟲類大對抗

nature pic, PanSci

別以為你在看侏儸紀世界!這是兩隻科摩多巨蜥(Komodo Dragon)為了爭地盤而決鬥的畫面。科摩多巨蜥生長在印尼,是現今體型最大的蜥蜴,平均體長可達2至3公尺,以肉食及腐食為生。由於科摩多巨蜥分泌的毒液會阻擋獵物凝血,造成獵物失血過多死亡,所以牠們會放走咬過的獵物,然後只要在背後偷偷跟蹤,食物就能手到擒來。這張展現野生動物決鬥的照片是2015年野生動物攝影師大賞的(Wildlife Photographer of the Year )的決選作品。

看得見的音爆

nature pic, PanSci

我們都知道當鴨子划過水面的速度大於水波的速度時,鴨子會在水面產生一道道美麗的漣漪。但你看過這樣的音爆場面嗎?這架美國的噴射機以超音速飛行在莫哈韋沙漠上空,位於噴射機上方的另一台美國太空總署的飛機捕捉了噴射機劃過天空的產生的衝擊波。光經過不同密度空氣的折射現象其實是很難被觀察的,但透過1864年德國科學家August Toepler發明的紋影攝影術(schlieren photography),我們能將音爆的效果完美呈現。

奇幻的麥哲倫雲

nature pic, PanSci

這可不是甚麼汙染河面的空拍圖XD,而是普朗克衛星捕捉微波及紅外光,計算後得到的麥哲倫雲。圖中較大片的褐色區塊為大麥哲倫星系( Large Magellanic Cloud),左下角較小的褐色區塊則為小麥哲倫星系( Small Magellanic Cloud )。這兩個星系屬於沒有旋渦、橢圓等結構的不規則星系,並可能環繞著我們生活的銀河系。

-----廣告,請繼續往下閱讀-----

象鼻蟲的大頭照

nature pic, PanSci

「哈囉~你在看我嗎?你可以再靠近一點!」這是一隻棉子象鼻蟲(boll weevil, Anthonomus grandis),頭部僅有幾釐米寬,長長的、延伸出來的不是鼻子,而是用來覓食的口器。這張Wellcome Image Awards的得獎作品,利用掃描電子顯微鏡(scanning electron microscope),清楚呈現象鼻蟲的頭部特徵。

大自然裡也有粉紅龐克!?

nature pic, PanSci

原文是用令人恐懼( eerie)去形容圖中像骷髏的物體,但我覺得它們笑得蠻可愛的啊╰( ̄▽ ̄)╭。哎呀~回歸正題,這是由David Maitland拍攝的紙紗草(papyrus plant, Cyperus papyrus)維管束切片200倍放大影像。維管束組織負責傳輸養分及水分,是維管植物裡很重要的角色,不只可愛而且還很有用呢!

病毒蔓延中

nature pic, PanSci

這是一張大病毒的3D影像( large virus,其宿主為後棘狀阿米巴變形蟲(Acanthamoeba polyphaga)),由數百張的2D影像疊圖而成。但科學家究竟是如何知道物質的三維結構呢?答案是,X光繞射(X-ray diffraction)。由於單一分子的繞射行為並不明顯,科學家唯有將待測物結晶,透過大量重複單元的晶格繞射結果,才得以了解待測物的結構。因此養晶、解結構,仍是目前最直接證明合成出目標分子的方法。可是…養晶是門藝術啊(倒~~)!生物大分子的結晶尤其困難。好消息是X光自由電子雷射器(一種高強度的脈衝X光)的出現有望解決這個困難,讓科學家不用養晶也能知道單一分子的結構!

太空泡泡

nature pic, PanSci

這團「雲啊~霧啊」的太空泡泡是行星狀星雲-南貓頭鷹星雲。當恆星進入生命晚期,其向外膨脹的氣體被電離後產生發射星雲,即為行星狀星雲。 此照片由智利的甚大望遠鏡( Very Large Telescope)拍攝。

-----廣告,請繼續往下閱讀-----

「冥王星,你好!」

nature pic, PanSci

2006年發射的新視野號,這幾年來不斷傳回大量的影像和資訊回地球,然而直到2015年,這張當新視野號最靠近冥王星時所拍攝的冥王星影像才真正地驚豔了大家。照片中太陽光清楚地勾勒出冥王星的輪廓,顯現了她孤冷(表面溫度44 K)的氣質。期待新視野號能帶領我們繼續發現太陽系的其他秘密。

快閃一瞬間

nature pic, PanSci

這張照片利用長時曝光的攝影技術,清楚地捕捉到了閃電!對於大部分的人來說,雷電交加是件很可怕的事;然而對於位在美國佛羅里達的國際閃電研究及測試中心(International Center for Lightning Research and Testing)而言,這些我們害怕的事物,卻是他們感興趣的對象。他們設計並實際探討火箭穿透風暴後觸發的閃電現象。

「膚淺」的人體影像

nature pic, PanSci

這張彩虹斑點的人體照片,顯現了在人體最大的器官-皮膚上的化學物質及微生物。圖中色彩越趨近於紅色代表此處的分子多樣性越高,反之,藍色代表多樣性低。聖地牙哥大學的Pieter Dorrestein及其團隊徵求兩名志願三天不洗澡的健康受試者,採取他們皮膚上約400個位置的樣品,進行質譜及DNA定序的分析,最後利用超級電腦彙整了大筆的數據並繪製了這張圖。

生生不息

nature pic, PanSci

這張滿布屍首的照片呈現了禿鷹的日常生活!禿鷹以屍體為食,很少主動攻擊動物。牠們的胃酸有很強的腐蝕性,因此即便吃下被細菌感染的食物,也不容易生病。這畫面或許看起來有點陰森,然而禿鷹的攝食習慣,其實在生態系統的健全發展中扮演很重要的角色。

-----廣告,請繼續往下閱讀-----

加州大火

nature pic, PanSci

今年8月克里爾雷克( Clearlake)的火災照片。人稱「金州」的加州這四年來飽受乾旱之苦,野生動物的生存受到了威脅,各地區更是火災頻傳。

火星上有水!?

nature pic, PanSci

「火星上究竟有沒有水?」一直是天文學家好奇的問題。現在,他們用這張火星上的隕石坑-火山口加尼上的照片證明火星上真的有水在流動!圖中黑色條紋的部分表示火星表面有含水的礦物質,且條紋的分布會受季節影響,推測和水的流動有關。這項研究仰賴高解析度成像科學設備(High Resolution Imaging Science Experiment, HiRISE),並希望後續的結果能讓我們對於宇宙生命的發展有更進一步的了解。

一口氣看完了那麼多精彩的照片,你是否更想了解其背後的故事呢?別擔心,泛科學早就為好奇的你準備了許多相關報導,祝大家有個收穫滿滿的2015喔!

延伸閱讀:

 參考資料:

-----廣告,請繼續往下閱讀-----
梁晏慈
8 篇文章 ・ 1 位粉絲
梁晏慈,台灣大學化學系研究所。 喜歡聽故事、說故事,還有貓。