0

0
0

文字

分享

0
0
0

契忍可夫輻射|科學史上的今天:10/23

張瑞棋_96
・2015/10/23 ・1007字 ・閱讀時間約 2 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

玻璃瓶內一小塊鈾鹽泡在清澈透明的液體中。契忍可夫(Pavel Cherenkov, 1904-1990;或譯切侖科夫)關上燈,只見黑暗中玻璃瓶內的液體泛著藍色的光芒;待眼睛完全適應黑暗後,契忍可夫記下光芒的範圍,打開燈,換上別種液體繼續實驗。

圖片來源:Oak Ridge National Laboratory@flickr

契忍可夫是於1933年在教授伐維洛夫(Sergey Vavilov)的建議下開始這項實驗。其實早在世紀初,居禮夫人就曾在黑暗中看到這奇異的藍色光芒,但並未深究;伐維洛夫猜測那是放射性物質的γ射線擊中液體的電子後,所輻射出來的光,但為什麼總是藍色的?契忍可夫做了二、三年實驗,始終沒有進展。

直到1936年,契忍可夫有了關鍵的發現:藍光並不是均勻對稱的。如果是電子散射,那應該平均分布在每個方向,但實際上藍光每次都是出現在γ射線的行進方向上。伐維洛夫的猜測因此被否決了,然而契忍可夫仍無法提出適當解釋;不過第二年,這個謎很快就由與他同一實驗室的兩名同事破解。

今天生日的法蘭克(Ilya M. Frank, 1908-1990)專長是數學與理論物理,他與另一名資深的理論物理學家塔姆(Igor Tamm, 1895-1971)於1937年找到發光的原因:帶電粒子在液體中的行進速度超過光速。

-----廣告,請繼續往下閱讀-----

等等,相對論不是說沒有任何物體的速度能超越光速嗎?是的,但那是指真空中的光速(c)。事實上光在介質中的行進速度會減慢(例如在水中的速度就只有0.75c),而一旦帶電粒子在水中的速度大0.75c時,就會導致類似超音速飛機產生的音爆現象。帶電粒子穿越介質時,它會改變附近介質的電場;一般狀況下,介質的電場在粒子離去時就會很快恢復平衡,但如果帶電粒子的速度大於介質中的光速時,帶電粒子行進路徑上的電場還來不及依序恢復平衡,就會「堆積」成震波,而釋放出電磁輻射。這就是「契忍可夫輻射」,頻率範圍從藍光到無線電波,因此我們肉眼看到的就是藍光;這也是為什麼包圍著核子反應爐的水池會泛著藍色光澤。

契忍可夫、法蘭克與塔姆三人因為此一發現而共同獲頒1958年的諾貝爾物理獎。如今契忍可夫輻射的現象還成為研究粒子物理的重要方法;例如微中子幾乎沒有質量又不帶電,因此難以偵測,一項我國也有參與的ARA計畫就在南極冰層底下就埋了許多偵測器,捕捉來自宇宙的微中子自地球另一端穿過厚厚冰層時,所產生的契忍可夫輻射。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 980 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
如何靠溫度控制做出完美的料理?
鳥苷三磷酸 (PanSci Promo)_96
・2024/06/21 ・2705字 ・閱讀時間約 5 分鐘

本文由 Panasonic 委託,泛科學企劃執行。 

炸雞、牛排讓你食指大動,但別人做的總是比較香、比較好吃?別擔心,只要掌握關鍵參數,你也可以做出完美料理!從炸雞到牛排,烹調的關鍵就在於溫度的掌控。讓我們一起揭開這些美食的神秘面紗,了解如何利用科學的方法,做出讓人垂涎三尺的料理。

美味關鍵 1:正確油溫

炸雞是大家喜愛的美食之一,但要做出外酥內嫩的炸雞,關鍵就在於油溫的掌控。炸雞的油溫必須維持在 160 到 180℃ 之間。當你將炸雞放入熱油中,食物的水分會迅速蒸發,形成氣泡,這些氣泡能夠保證你的炸雞外皮酥脆而內部多汁。

水的沸點是 100℃,當麵衣中的水分接觸到 160℃ 的熱油時,會迅速汽化成水蒸氣。這個過程不僅讓麵衣變得酥脆,也能防止內部的雞肉變得乾柴。

-----廣告,請繼續往下閱讀-----

如果油溫過低,麵衣無法迅速變得酥脆,水分和油脂會滲透到食物中,使炸雞變得油膩。而如果油溫過高,水分會迅速蒸發,使麵衣變得過於硬或甚至燒焦。

油炸時,麵衣水分會快速汽化。 圖/Envato

美味關鍵 2:焦糖化與梅納反應

另一道美味的料理——牛排。無論是煎牛排還是炒菜,高溫烹調都會帶來令人垂涎的香氣,這主要歸功於焦糖化反應和梅納反應。

焦糖化反應是指醣類在高溫下發生的非酵素性褐變反應,這個過程會產生褐色物質和大量的風味分子,讓食物變得更香。而梅納反應則是指醣類與氨基酸在高溫下發生的反應,這個過程會產生複雜的風味分子,使牛排的色澤和香氣更加迷人。

要啟動焦糖化反應和梅納反應的溫度,至少要在 140℃ 以上。如果溫度過低,無法啟動這些反應,食物會顯得平淡無味。

-----廣告,請繼續往下閱讀-----
焦糖化反應


焦糖化反應與梅納反應。圖/截取自泛科學 YT 頻道

油溫與健康

油溫不僅影響食物的風味,也關係到健康。不能一昧地升高油溫,因為每種油都有其特定的發煙點,即開始冒煙並變質的溫度。當油溫超過發煙點,會產生有害物質,如致癌的甲醛、乙醛等。因此,選擇合適的油並控制油溫,是保證烹調健康的關鍵。

說了這麼多,但是要怎麼控制溫度呢?

各類油品發煙點 。圖/截取自泛科學 YT 頻道

科學的溫度控制

傳統電磁爐將溫度計設在爐面下,透過傳導與熱電阻來測溫,Panasonic 的 IH 調理爐則有光火力感應技術,利用紅外線的 IR Sensor 來測溫,不用再等熱慢慢傳導至爐面下的溫度計,而是用紅外線穿透偵測鍋內的溫度,既快速又精準。

而且因為紅外線可以遠距離量測,如果甩鍋炒菜鍋子離開爐面,也能持續追蹤動態。不會立即斷開功率關掉,只要鍋子放回就會繼續加熱,效率不打折。

-----廣告,請繼續往下閱讀-----

好的溫度感測還要搭配好的溫度控制,才能做出一流的料理。日本製的 Panasonic IH 調理爐,將自家最自豪的 ECONAVI 技術放進了 IH 爐中。有 ECONAVI 的冷氣能完美控制你的室溫,有 ECONAVI 的 IH 調理爐則能為你的料理完美控溫。

有 ECONAVI 的 IH 爐不只省能源、和瓦斯爐相比減少碳排放,更為料理加分。前面說了溫度就是一切的關鍵,但是當我們將食材投到熱鍋中,鍋中的溫度就會瞬間下降,打亂物理與化學反應的節奏,阻止我們為料理施加美味魔法。

所以常常有好的廚師會告訴我們食物要分批下,避免溫度產生太大變化。Panasonic IH 調理爐,只要透過 IR Sensor 一偵測到溫度下降,就能馬上知道有食材被投入並立刻加強火力,讓梅納反應與焦糖化反應能持續發揮變化。而當溫度回到設定溫度,Panasonic IH 調理爐也會馬上將火力轉小,透過電腦 AI 的迅速反應,掌握溫度在最完美區間不劇烈起伏。

不僅保證美味關鍵,更不用擔心油溫超過發煙點而導致油品變質,讓美味變得不健康。

-----廣告,請繼續往下閱讀-----
透過 IR Sensor 精準測溫並提升火力。圖/截取自泛科學 YT 頻道
IH 調理爐完美控溫 。圖/截取自泛科學 YT 頻道

舒適的烹飪環境

最後,IH 爐還有一個大優點。相比於瓦斯爐,因為沒有使用明火,加熱都集中在鍋具。料理過程更安全,同時使用者也不會被火焰的熱氣搞得心煩意亂、汗流浹背,在廚房也能過得很舒適。而且因為熱能集中,浪費的能源也更少。

因為沒有使用明火,料理過程安全又舒適。圖/截取自泛科學 YT 頻道
Panasonic IH調理爐火力精準聚集在鍋內。圖/Panasonic提供

為了更多的功能、更好的效能,我們早已逐步從傳統按鍵手機換成智慧型手機。一樣的,在廚房內,如果你想輕鬆做出好料理,同時讓烹飪的過程舒適愉快又安全。試試改用 Panasonic IH 爐,一起享受智慧廚房的新趨勢吧!👉 https://pse.is/649gm5

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 306 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

6

12
3

文字

分享

6
12
3
【2021諾貝爾物理學獎】如何觀測地球暖化?有「氣候模型」及「複雜物理系統」就搞定!
PanSci_96
・2021/10/05 ・2286字 ・閱讀時間約 4 分鐘

2021 年諾貝爾物理獎於5日下午揭曉!本次獎項由美籍日裔學者真鍋淑郎(Syukuro Manabe)、德國學者哈斯曼(Klaus Hasselmann)及義大利學者帕里西(Giorgio Parisi)等 3 位學者共同獲獎。

真鍋淑郎與哈斯曼,因為地球暖化的研究建立了可預測的物理模型,幫助人類「了解地球氣候」及「地球氣候如何被人類影響」而獲獎;帕里西則是成功用物理系統,描述從原子到行星尺度下的各種無序的(disorder)「相互作用」和「波動」(fluctuations)而獲獎。

人類活動讓二氧化碳劇增,就是地球暖化元兇!

氣候,是一個對人類至關重要的複雜系統,而真鍋淑郎的研究為當前氣候模型的發展奠定了基礎。在 1960 年代, 真鍋淑郎領導了地球氣候物理模型的開發,他也是第一個探討輻射平衡和氣團垂直運運輸之間交互作用的科學家,在那個電腦運算能力比現在慢上幾十萬倍的年代,他建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。

真鍋淑郎建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。圖/The Nobel Prize

大約十年後,哈斯曼創建了一個將天氣和氣候聯繫在一起的模型,證實了雖氣候多變且混亂,但氣候模型仍然可靠。自然現象和人類活動都會在氣候中留下痕跡,他開發的模型可以辨識這些活動的特定信號和指紋圖譜,因此可以進一步地觀測人類對於氣候系統的影響。

-----廣告,請繼續往下閱讀-----

哈斯曼創建的模型證實了人類活動加劇了溫室效應;自 19 世紀中葉以來,大氣中的二氧化碳含量增加了 40%。在這數十萬年來,地球的大氣層從未包含如此多的二氧化碳,溫度測量也顯示,在過去的 150 年中,全球溫度升高了 1°C。這證明了大氣溫度的升高,是由於人類活動產生的二氧化碳所導致的。

這兩位得獎者的研究,讓我們清楚的知道,地球溫度的確在上升,原因是因為大氣中的溫室氣體含量增加,而造成這個現象的原因,並不是因為自然因素,很明顯的,人類就是始作俑者。

哈斯曼創建的模型證實了人類活動加劇了溫室效應。圖/The Nobel Prize

複雜系統背後隱藏的規律

1980 年左右,帕里西在無序的複雜材料中,發現了隱藏的規律。 這個發現不只是能成功解釋複雜材料,更是對複雜系統理論中最重要的貢獻之一。帕里西提出的規律,讓理解或描述各式不同的複雜材料和現象成為可能,不僅在物理學中,也在其他如數學、生物學、神經科學和機器學習等領域中被運用。

A 編按:已努力修復,如果有錯或需要補充隨時在線。(20211007)

從物理來談複雜系統,就必須先從統計力學說起。

-----廣告,請繼續往下閱讀-----

微觀下的粒子運動具有隨機性,導致無法精確算出每個粒子確切的運動,為了解決這個問題,統計力學不再看「一個粒子」,而是「一整群粒子」的運動,用統計的方式算出每個粒子的平均效果,這樣算出來的結果也能解釋巨觀現象。最接近生活的例子就是「溫度」,在微觀尺度下,溫度被描述為系統內粒子的平均動能,而在巨觀現象上,溫度這個指標也能解釋固液氣三態變化的原因。

但還有一些狀況是過去統計力學較難解釋的,以下圖為例,下圖的藍色球體是一種微小的氣體粒子,當你不斷對這群氣體粒子降溫或加壓,會讓氣體變成液體,最後結晶成固體。

降溫或加壓後形成的固體結晶,一般情況下會有固定的晶體結構,但如果溫度或壓力快速改變,就會擠壓出不規則的晶體結構,且就算用同樣的方式改變溫度或壓力,也不會出現相同的結構(下圖 a 與 b 所示)。

同樣的氣體分子被相同的方法快速壓縮後,會出現不同的結構。圖/The Nobel Prize

說這是隨機造成的也沒錯,但這結晶問題的背後,難道真的沒有規律可言嗎?

帕里西最初是研究稱為「自旋玻璃(Spin glass)」的材料,自旋玻璃並不是玻璃,是在非磁性金屬中摻入少量磁性金屬的合金,例如在銅裡面摻入少量的鐵,這時,摻入的少量鐵原子會隨機進入銅的結構中,而這些鐵原子的排列方式,卻令物理學家頭疼。

-----廣告,請繼續往下閱讀-----

我們可以把一顆鐵原子當作一塊小磁鐵,而一般常見的磁鐵,是裡頭的鐵原子都往同一個方向排列(自旋方向相同)。但自旋玻璃中的鐵原子,有些會跟旁邊的鐵原子指向同一個方向,有些則相反,這時若有第三顆鐵原子在系統中,第三顆鐵原子就會面臨兩難的局面,不知道要往哪個方向才對,形成所謂「受挫(frustration,如下圖所示)」的狀態。

「受挫」狀態示意圖。圖/The Nobel Prize

針對自旋玻璃的「受挫」狀態,帕里西的書中提到:「就像你想同時跟兩人交朋友,但這兩人卻互相討厭對方。」

1970 年代,許多物理學家都研究過自旋玻璃問題,他們想用統計力學中的「副本方法(Replica method)」來解釋,但最初計算的結果是失敗的,直到 1979 年,帕里西巧妙地運用副本方法解決了自旋玻璃問題,並花了多年時間證明這套方法在數學上的正確性。之後,這套巧妙的副本方法被用於許多無序系統,成為複雜系統的基石。

諾貝爾物理學委員會主席Thors Hans Hansson表示,今年獲獎的研究發現表明,我們對地球氣候變遷的理解建立在堅實的科學基礎上。3位獲獎者基於嚴謹的觀測分析,為我們更深入地了解「複雜物理系統」(complex physical systems)的特性和演化做出了貢獻。

所有討論 6
PanSci_96
1223 篇文章 ・ 2286 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。