Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

雙星形成理論的重大進展!

臺北天文館_96
・2014/01/20 ・1002字 ・閱讀時間約 2 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

binaryStarFormation_nrao
天文學家利用甫完成升級的「顏斯基特大天線陣列」(Karl G. Jansky Very Large Array),在一對非常年輕的原恆星周圍,發現之前沒有見到的伴星。先前對雙星如何形成有許多種可能的解釋,但這項發現強烈支持環星盤分裂形成雙星的模型。
天文學家已經知道在類似太陽的恆星中,約有半數是雙星或多星系統,但對其形成方式仍爭論不休。
「唯一能解決爭論的方法,就是觀測非常年輕的恆星系統,捕捉它們形成的瞬間。」美國國家電波天文台(National Radio Astronomy Observatory,NRAO)的John Tobin表示,「這也是我們為何選擇此觀測目標的原因,我們從此得到非常寶貴的新線索。」
這些新線索支持雙星系統的形成機制,是由圍繞年輕恆星的盤狀氣體與塵埃,形成另一顆圍繞原本恆星的新恆星。仍從周遭環境收集物質的恆星會形成這樣的盤狀構造,還會在與盤面垂直方向形成噴流,將物質快速的推出。
當Tobin和國際團隊的天文學家研究距離地球約1000光年,被氣體包覆的年輕恆星時,他們發現有兩顆恆星在垂直噴流方向-也就是原本恆星盤該在的地方-有之前未曾發現的伴星存在。其中一個恆星系統,在兩顆年輕的恆星旁都能清楚看到環星盤的存在。
「這相當吻合伴星是由於環星盤分裂所形成的理論模型,其他可能的理論並不需要這種觀測結果來解釋。」Tobin表示。
新的觀測讓環星盤分裂理論的證據更加周全,在2006年,另一組特大天線陣列的觀測團隊發現一對互繞的年輕恆星,這兩個恆星各自擁有環星盤,且環星盤的方向在同一個平面上。2012年,Tobin和他的團隊,在恆星形成早期的原恆星階段發現一個很大的環星盤,這顯示在恆星形成的早期,環星盤就已經存在-這對環星盤分裂形成雙星的理論來說是必須的。
美國國家電波天文台和伊利諾大學的Leslie Looney表示:「我們的新發現加上之前的觀測資料,讓環星盤分裂成為解釋密近多星系統形成的最佳模型。」
美國國家電波天文台的Claire Chandler說,一項2012年完成、耗時十年的特大天線陣列升級計畫,增加了天線陣列的敏感度,才促成這項發現。
新的功能對特大天線陣列40-50 GHz的高頻帶特別有用,這是年輕恆星環星盤中塵埃會發出的無線電波頻率。
 Tobin、Chandler和Looney是來自美國、墨西哥和荷蘭的研究團隊的成員,他們的發現發表在《天文物理期刊》(the Astrophysical Journal)。
資料來源:New Studies Give Strong Boost to Binary-Star Formation Theory. NRAO [December 31, 2013]
本文轉載自網路天文網
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
首度在四合星系統中發現系外行星
臺北天文館_96
・2012/10/18 ・925字 ・閱讀時間約 1 分鐘 ・SR值 494 ・六年級

一組由業餘天文愛好者和專業天文學家組成的「行星獵人計畫(Planet Hunters)」工作團隊,在一個由兩組雙星組成的四合星系統中發現一顆行星。這是第一次在這種四合星系統中發現系外行星。

行星獵人計畫由耶魯大學( Yale University)天文學家Meg Schwamb帶領下,發現這顆所謂的「環雙星系外行星(circumbinary planet)」,如其名,這顆行星環繞一對互繞的雙星公轉,公轉一圈約需138天;而這對雙星,彼此互繞的週期約為20天,且為一對食雙星,質量分別為太陽的1.5倍和0.41倍。但和其他環雙星系外行星不一樣的地方是:在這對雙星約1000AU遠之處,有另一對雙星,兩對雙星互繞,所以這實則為一個四合星系統(four-star ystem)。

到目前為止,天文學家只找到6顆環雙星系外行星,但全部都是單純的雙星,並沒有又和其他單星或雙星組成聚星系統。Schwamb表示:環雙星系外行星誕生的環境相當極端。在這類系統中發現行星,往往可促使我們深入思考行星如何能在這樣變化劇烈的環境中形成、聚集甚至演化。

這顆在四合星系統中新發現的行星,目前編號為PH1,即行星獵人計畫發現的第一顆系外行星的縮寫。Schwamb帶領業餘天文愛好者Kian Jek、Robert Gagliano等人,分析克卜勒太空望遠鏡(Kepler)的觀測資料,從而發現了PH1。克卜勒任務是利用凌日法來偵測系外行星,當行星經過恆星前方時,地球上將會看到恆星的亮度稍微下降的現象。發現PH1之後,Schwamb再與其他專業天文學家,利用位在夏威夷的凱克望遠鏡(Keck telescopes)做追蹤觀測;觀測結果確認PH1是顆半徑約為地球6.2倍的氣體巨行星,大約比太陽系中的海王星還大一點。

-----廣告,請繼續往下閱讀-----

行星獵人計畫始於2010年,由耶魯大學天文教授Debra Fischer發起並執行,參與人數多達數千人。由於克卜勒任務的觀測資料非常龐大,如果不是透過這種方式,這個四合星系統中的行星很可能就在眼皮子底下溜過了。因此這個計畫不僅滿足的業餘天文者的參與感,同時也加速了專業天文學家發現的腳步,是種互利互榮的好研究方式。雖然現在有許多自動化技術可以自動分析克卜勒資料庫,但並不總是全然如天文學家希冀的那般有效率。這更突顯了行星獵人計畫存在的重要性。

資料來源:Armchair astronomers find planet in four-star system. Yale News [October 15, 2012]

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
雙星形成理論的重大進展!
臺北天文館_96
・2014/01/20 ・1002字 ・閱讀時間約 2 分鐘 ・SR值 503 ・六年級

binaryStarFormation_nrao
天文學家利用甫完成升級的「顏斯基特大天線陣列」(Karl G. Jansky Very Large Array),在一對非常年輕的原恆星周圍,發現之前沒有見到的伴星。先前對雙星如何形成有許多種可能的解釋,但這項發現強烈支持環星盤分裂形成雙星的模型。
天文學家已經知道在類似太陽的恆星中,約有半數是雙星或多星系統,但對其形成方式仍爭論不休。
「唯一能解決爭論的方法,就是觀測非常年輕的恆星系統,捕捉它們形成的瞬間。」美國國家電波天文台(National Radio Astronomy Observatory,NRAO)的John Tobin表示,「這也是我們為何選擇此觀測目標的原因,我們從此得到非常寶貴的新線索。」
這些新線索支持雙星系統的形成機制,是由圍繞年輕恆星的盤狀氣體與塵埃,形成另一顆圍繞原本恆星的新恆星。仍從周遭環境收集物質的恆星會形成這樣的盤狀構造,還會在與盤面垂直方向形成噴流,將物質快速的推出。
當Tobin和國際團隊的天文學家研究距離地球約1000光年,被氣體包覆的年輕恆星時,他們發現有兩顆恆星在垂直噴流方向-也就是原本恆星盤該在的地方-有之前未曾發現的伴星存在。其中一個恆星系統,在兩顆年輕的恆星旁都能清楚看到環星盤的存在。
「這相當吻合伴星是由於環星盤分裂所形成的理論模型,其他可能的理論並不需要這種觀測結果來解釋。」Tobin表示。
新的觀測讓環星盤分裂理論的證據更加周全,在2006年,另一組特大天線陣列的觀測團隊發現一對互繞的年輕恆星,這兩個恆星各自擁有環星盤,且環星盤的方向在同一個平面上。2012年,Tobin和他的團隊,在恆星形成早期的原恆星階段發現一個很大的環星盤,這顯示在恆星形成的早期,環星盤就已經存在-這對環星盤分裂形成雙星的理論來說是必須的。
美國國家電波天文台和伊利諾大學的Leslie Looney表示:「我們的新發現加上之前的觀測資料,讓環星盤分裂成為解釋密近多星系統形成的最佳模型。」
美國國家電波天文台的Claire Chandler說,一項2012年完成、耗時十年的特大天線陣列升級計畫,增加了天線陣列的敏感度,才促成這項發現。
新的功能對特大天線陣列40-50 GHz的高頻帶特別有用,這是年輕恆星環星盤中塵埃會發出的無線電波頻率。
 Tobin、Chandler和Looney是來自美國、墨西哥和荷蘭的研究團隊的成員,他們的發現發表在《天文物理期刊》(the Astrophysical Journal)。
資料來源:New Studies Give Strong Boost to Binary-Star Formation Theory. NRAO [December 31, 2013]
本文轉載自網路天文網
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
眾望遠鏡轉播175年前一場大爆炸的回光
臺北天文館_96
・2012/02/21 ・1722字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

太空望遠鏡研究所(Space Telescope Science Institute,STScI)Armin Rest等天文學家利用哈柏太空望遠鏡(Hubble Space Telescope,HST)觀察船底座Eta(Eta Carinae)雙星系統約在175年前一場劇烈爆炸事件的回光(light echo)。這項研究,將有助於天文學家瞭解關於大質量恆星超新星爆炸的一些細節。Rest表示:任何目前已知的船底座Eta爆發事件,都是從「目睹」的歷史紀錄而來;但利用現代科學儀器,一年一年追蹤這些回光如何變化,卻可以知道在爆發事件這麼多年之後,直接瞭解爆發的本質。

這場被稱為「大爆發(Great Eruption)」的超新星爆炸事件於西元1837年首度被觀測到,而且一直到1858年都還可以看到爆炸的餘光。但當時的天文學家沒有如現代般的精密儀器,無法正確地記錄這場猛爆性天文事件。由於爆發當時所發出的光是向四面八方散開,現代天文學家何其幸運,其中一部分爆發當時所發出的光,被離船底座Eta星有段距離的塵埃雲氣反射後間接傳遞到地球。由於回光走的路徑比爆發後直衝地球而來的光還長許多,因此延宕了175年才抵達地球。天文學家詳細分析這個回光,可以從中瞭解這個巨獸級大質量恆星毀滅瞬間的狀況,或許可幫助天文學家修正關於超新星爆炸的理論模型。

船底座Eta位在南天的船底座方向,距離地球約7,500光年,兩星總質量高達140倍太陽質量左右,是銀河系中最大、最亮的恆星系統之一。不過這對雙星卻是以這個大爆發事件著稱,因為這場1837年的爆發事件是曾觀測到過類似事件規模最大的。1837年爆發後約20年的期間,船底座Eta流失約20個太陽質量的物質,成為當時全天第二亮的恆星。有一部向外流失的物質在恆星周圍形成一對巨大的物質瓣(lobe)。

以天文尺度而言,船底座Eta算是離地球相當近的恆星系統,因此天文學家已經啟用包括哈柏太空望遠鏡在內的各式望遠鏡觀察船底Eta。除了哈柏之外,Rest等人還結合了地面望遠鏡的可見光和光譜觀測資料來進行研究;雖然光譜觀測並不是新鮮事,但之前都僅針對超新星本身,Rest等人的研究則是首度利用光譜分析船底Eta的回光,可由此獲得超新星爆炸像外拋出物質的「指紋」,如溫度和速度等。

-----廣告,請繼續往下閱讀-----

雖然這個回光比超新星爆發本身晚了175年才抵達地球,但帶給天文學家的驚喜卻不下於超新星爆炸當時。船底Eta是所謂的亮藍變星(Luminous Blue Variable,LBV),這類恆星質量很大、非常明亮,週期性地發生爆發。這個紊亂的恆星系統的行為,和其他類似的恆星系統不大相同。例如:從船底Eta中心區向外流出物質的溫度高達絕對溫度5,000K,比其他類似的爆發恆星的流出物質溫度還低得多。對付這個恆星怪胎,Rest等人得回頭檢視相關的理論模型,看看到底是什麼樣的變動因素造成現在觀測到的這種奇特狀況。

Rest等人其實是比較2010年和2011年利用美國光學天文臺(U.S. National Optical Astronomy Observatory)位在智利托洛洛山的泛美天文臺(Cerro Tololo Inter-American Observatory,CTIO)4米Blanco望遠鏡所拍攝的可見光影像,從而發現船底Eta的回光。後來他們另從亞利桑納大學(University of Arizona)天文學家Nathan Smith處得到2003的CTIO觀測系列觀測資料,對分析這場大爆炸事件的工作更如虎添翼般。

這個回光比超新星爆炸本身的光還暗很多,但僅一年相隔就可以看出它的位置有變動,不過這個位置變動並不是同一束光真的在這些塵埃間移動,而是與船底Eta不同距離、不同方向的塵埃反射回光的時間也不同,與看起來好像是同一道光、或是一般超新星爆炸的震波向外傳遞過程中激發周邊物質的光隨震波移動而向外擴張的狀況不一樣。

而利用卡內基研究所(Carnegie Institution)麥哲倫望遠鏡(Magellan)和智利坎帕斯山天文臺(Las Campanas Observatory)du Pont望遠鏡所做的光譜觀測,Rest等人不僅獲得物質流的溫度,還估算出超新星爆炸向外拋射的物質移動速度高達每小時70萬公里,與理論模型預測相符。

-----廣告,請繼續往下閱讀-----

此外,這群天文學家利用位在澳洲塞丁泉(Siding Spring)Las Cumbre天文臺的福克斯南座望遠鏡(Global Telescope Network’s Faulkes Telescope South)監測回光的強度變化,再與1800年代天文學家所做的那20年持續可見的超新星爆炸亮光逐漸變亮而後逐漸變暗的觀測繪圖比較,發現這場爆發事件在1843年時亮度達到最亮的趨勢是相同的。

這些天文學家將持續追蹤監測船底Eta的回光變化,並預測在未來6個月間,船底Eta回光的亮度應該會接近1844年時看到的亮度。如果持續監測到能捕捉到所有方向傳回的爆發回光,那麼屆時或許可以獲得這場大爆發事件的整體狀況。

資料來源:Astronomers Watch Delayed Broadcast of a Powerful Stellar Eruption[2012.02.15]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!