0

0
0

文字

分享

0
0
0

首度在四合星系統中發現系外行星

臺北天文館_96
・2012/10/18 ・925字 ・閱讀時間約 1 分鐘 ・SR值 494 ・六年級

一組由業餘天文愛好者和專業天文學家組成的「行星獵人計畫(Planet Hunters)」工作團隊,在一個由兩組雙星組成的四合星系統中發現一顆行星。這是第一次在這種四合星系統中發現系外行星。

行星獵人計畫由耶魯大學( Yale University)天文學家Meg Schwamb帶領下,發現這顆所謂的「環雙星系外行星(circumbinary planet)」,如其名,這顆行星環繞一對互繞的雙星公轉,公轉一圈約需138天;而這對雙星,彼此互繞的週期約為20天,且為一對食雙星,質量分別為太陽的1.5倍和0.41倍。但和其他環雙星系外行星不一樣的地方是:在這對雙星約1000AU遠之處,有另一對雙星,兩對雙星互繞,所以這實則為一個四合星系統(four-star ystem)。

到目前為止,天文學家只找到6顆環雙星系外行星,但全部都是單純的雙星,並沒有又和其他單星或雙星組成聚星系統。Schwamb表示:環雙星系外行星誕生的環境相當極端。在這類系統中發現行星,往往可促使我們深入思考行星如何能在這樣變化劇烈的環境中形成、聚集甚至演化。

這顆在四合星系統中新發現的行星,目前編號為PH1,即行星獵人計畫發現的第一顆系外行星的縮寫。Schwamb帶領業餘天文愛好者Kian Jek、Robert Gagliano等人,分析克卜勒太空望遠鏡(Kepler)的觀測資料,從而發現了PH1。克卜勒任務是利用凌日法來偵測系外行星,當行星經過恆星前方時,地球上將會看到恆星的亮度稍微下降的現象。發現PH1之後,Schwamb再與其他專業天文學家,利用位在夏威夷的凱克望遠鏡(Keck telescopes)做追蹤觀測;觀測結果確認PH1是顆半徑約為地球6.2倍的氣體巨行星,大約比太陽系中的海王星還大一點。

行星獵人計畫始於2010年,由耶魯大學天文教授Debra Fischer發起並執行,參與人數多達數千人。由於克卜勒任務的觀測資料非常龐大,如果不是透過這種方式,這個四合星系統中的行星很可能就在眼皮子底下溜過了。因此這個計畫不僅滿足的業餘天文者的參與感,同時也加速了專業天文學家發現的腳步,是種互利互榮的好研究方式。雖然現在有許多自動化技術可以自動分析克卜勒資料庫,但並不總是全然如天文學家希冀的那般有效率。這更突顯了行星獵人計畫存在的重要性。

資料來源:Armchair astronomers find planet in four-star system. Yale News [October 15, 2012]

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 29 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
在紛亂、窮苦的人間,三本書,讓克卜勒成為「星空的立法者」(下)
活躍星系核_96
・2020/11/08 ・2606字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

在上一篇中,我們看到克卜勒為哥白尼的日心說挺身而出,並透過《宇宙的秘密》、《新天文學》兩本書奠定了今日克卜勒第一、第二定律的基礎,接下來,我們即將進入克卜勒的另外一本重要著作:《世界的和諧》。

在發行《新天文學》後,克卜勒擁有全歐洲最精準的行星預測方法,他開始發行自己出版的預測年曆,當作一部分多出來的收入,他希望自己以後能夠不依靠國王的經費,隨心所欲的出書。

此時,是他天文研究的巔峰、人生的最低谷

同時,有鑑於《新天文學》中太多數學論證,不大容易讓學生理解預測行星的方法,克卜勒開始著手撰寫了天文教科書《哥白尼天文學概要》(Epitome Astronomiae Copernicanae),這本書將成為 17 世紀所有天文學家必讀的經典。

克卜勒的著作,《哥白尼天文學概要》。圖/wikipedia

克卜勒的天文研究雖然來到了巔峰時期,但他的現實生活並不順遂,第一任妻子和三個兒女的接續病逝,他所居住的地區也開始瀰漫著宗教紛爭,正一步步走向無法挽回的「三十年戰爭」。

1618 年初,克卜勒原本打算繼續撰寫第谷未完成的「魯道夫星表」,但心力憔悴的他希望從另一個新研究中尋找到心靈慰藉,於是他寫信告訴朋友:「我暫緩了魯道夫星表的工作,並且開始將我的心力投入在研究『和諧』」。

低潮中的慰藉,研究「和諧」與天體音樂

什麼是「和諧 (harmony)」?和諧的概念源自於人類觀察大自然的現象,發現大自然存在著某種特殊的數學比例。

在西元前 600 年,希臘數學家畢達哥拉斯發現,撥動特定比例的弦長能夠產生特定的音高,畢達哥拉斯也將音樂上的「和諧」推廣到行星運動上,行星和地球的距離每繞行一個周期都會伴隨著固定的比例變化,就像是行星擁有自己的旋律、特定的音階,這種想法被稱之為「天體音樂 (music of the spheres) 」。 

克卜勒希望將《宇宙的秘密》的幾何概念和《新天文學》的物理概念推廣到「天體音樂」的概念中。

克卜勒《世界的和諧》一書的內頁。圖/wikimedia

現在,讓我們回顧一下克卜勒前兩本重要著作,《宇宙的秘密》、《新天文學》。

在《宇宙的秘密》中,克卜勒認為「上帝是用幾何當作建材搭建宇宙」 ,如今他將自己的正多面體理論延伸結合「天體音樂」,試圖用五種正多面體當作基底來解釋各個行星的旋律。

在《新天文學》中,克卜勒寫出了單一行星:火星的橢圓軌跡,他了解到行星的離心率造就了行星忽快忽慢的現象,在經過幾年的套用後,克卜勒了解到每個行星的離心率都不相同。

此後,克卜勒開始著手繼續研究哥白尼概念中提到的「準則」:行星週期和行星跟太陽距離的關係。

《世界的和諧》:週期定律的現世

克卜勒和畢達哥拉斯不同,他對於數值特殊的比例不感興趣,他想要知道的是週期和平均距離精確的數學關係,在他擁有六個行星的完整軌跡的情況下,克卜勒能夠將所有資料攤在一起,花點時間和心思仔細查看它們之間的關聯性。

1618 年的 5 月,克卜勒找到了他渴求的數學關係式:週期平方和行星半長軸的三次方成正比關係,這就是克卜勒的第三定律「週期定律」,是牛頓寫出萬有引力定律的基礎之一。

週期定律中,克卜勒認為「行星週期的平方」與「行星軌道半長軸 (a) 的立方」成正比。圖/wikipedia

1619年,克卜勒出版了《世界的和諧》,結束了他長達 20 幾年的解密日心說的旅程,此時,克卜勒再也都止不住他的狂喜了,他在《世界的和諧》中的最後一章寫下:

「我已經擲下了骰子,也寫好了書,不管你是同輩還是前輩,這並不重要。既然上帝等待了祂的研究者足足六千年,我大可等待一百年後的讀者。」

1627 年,克卜勒出版了「魯道夫星表」,結合了第谷的完整觀測資料加上克卜勒的預測模型,成了當時資料最完整最精準的星表。

科學史上第一位「天文物理學家」

在一個世紀後,牛頓運用自己獨創的萬有引力和微積分,重新證明了克卜勒三大定律,利用漂亮的數學工具解釋了克卜勒多年來的努力,問到克卜勒的成就,牛頓只簡單的評論:「他(克卜勒)當然是用「猜」的,他知道軌跡非圓是卵形,於是他就猜會是橢圓。」

或許我們不該懷疑克卜勒是否猜出橢圓,而是要詢問為何只有克卜勒能夠發現橢圓?

因為他是第一個將「物理」導入天文學的天文學家,他不聽信老師馬斯特林 (Maestlin)「不該把物理學引入天文學」的勸言,堅持使用具有物理意義的「距離規則」來思考天文,有了根據行星運動建立的基礎物理定義,儘管克卜勒當時只有幾何工具,透過誤差分析不斷的改進預測模型,克卜勒會發現橢圓也是遲早的事情。

克卜勒一生堅信自己的天文物理觀,從始至終都不知道自己已經悄悄地成為科學史上第一位「天文物理學家」。

註解

此觀點出自於 Owen Jay Gingerich 的《Johannes Kepler and the New Astronomy》中,他在內文提到:如果克卜勒能從 20 世紀的字稱呼自己,我猜他會希望稱做自己為宇宙學家,但我會傾向我們能尊稱他為「第一個天文物理學家」。

參考資料

  1. Aiton, E.J. (1969). Kepler’s second Law of Planetary Motion. Isis A Journal of the History of Science Society, 60, 75-90.
  2. Wilson, C. (1968). Kepler’s derivation of the elliptical path. Isis A Journal of the History of Science Society, 59, 5-25
  3. Gingerich, O. (1972). Johannes Kepler and the New Astronomy. Quarterly Journal of the Royal Astronomical Society, 13, 346-373
  4. James, R.V. (1999). Johannes Kepler and the New Astronomy. New York:Oxford University Press
  5. 姚珩、黃瑞秋 (2003)。克卜勒行星橢圓定律的初始內涵。科學教育月刊,第 256 期, 第 33-45 頁。
  6. 姚珩 (2004)。行星面積定律的建立。科學教育月刊,第 257 期,第 32-38 頁。
  7. International LaRouche Youth Movement. (2006). Presentation of Kepler’s Astronomia Nova.
  8. 維基百科:Rudolphine TablesHarmonices MundiJohannes KeplerMusica universalis

作者資訊

  • 仰望天空的智人

目前為高三自學生,在升上高三的那個暑假,毅然決 然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

活躍星系核_96
752 篇文章 ・ 100 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

4
2

文字

分享

0
4
2
在紛亂、窮苦的人間,三本書,讓克卜勒成為「星空的立法者」(上)
活躍星系核_96
・2020/11/06 ・3957字 ・閱讀時間約 8 分鐘 ・SR值 498 ・六年級

  • 作者/仰望天空的智人|目前為高三自學生,在升上高三的那個暑假,毅然決 然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

從三本著作了解克卜勒的天文物理觀

在歷史長河中,天文學家們提出了各種五花八門的理論,嘗試理解天上六顆讓人捉摸不定的行星,但唯有一個人的理論能夠毫無誤差1的精準預測,時至今日仍舊屹立不搖,他的名字是——約翰尼斯.克卜勒 (Johannes Kepler) 。

克卜勒是第谷.布拉赫 (Tycho Brahe) 的得意助手,生前時,他鼓舞了同時代的伽利略公布真相,在死後,也啟發一百年後的牛頓建立了牛頓三大運動定律。

而克卜勒一生的天文成就被萃取成了「克卜勒三大定律」,最終被寫入到了現今的物理課本中。

克卜勒肖像。圖/Wikimedia common

克卜勒一生發表了許多影響後世的劃時代著作,涵蓋數學、天文、光學,現在,請讓我們將視野聚焦在三本克卜勒的天文鉅作:《宇宙的秘密》、《新天文學》、《世界的和諧》,分別象徵著,開始、轉折、結束,仔細端詳三個不同時期的克卜勒,如何逐漸完整他的「天文物理觀」。

《宇宙的秘密》:最早公開支持哥白尼理論的書籍之一

原先主張地心說的托勒密認為:行星是繞行地球在固定的球殼上一層又一層,如同洋蔥一般,自從古希臘後裔托勒密完成他的《天文學大成》開始, 一千多年以來,地心說一直都是西方天文學的主宰。

而 16 世紀時,主張日心說的哥白尼認為行星其實是繞行太陽,所有行星都和太陽冥冥之中都遵守著一個「通則」,且每個行星都和太陽保持著特定的比例關係。

在《天體運行論》的日心說模型中,哥白尼認為太陽是宇宙的中心,地球與其他行星一起繞著太陽轉。圖/De revolutionibus orbium coelestium 。

1595 年,身為講師的克卜勒,在授課的時候畫出了正三角形鑲嵌在圓形裡的示意圖,他突然靈光一閃,如果他在正三角形裡面又多鑲嵌一個小圓,這樣兩個圓就會有了比例的關係了!這不就像是哥白尼概念中提到的「每個行星和太陽都有特定的比例關係」嗎?

當時,哥白尼沒有解釋每個行星保持特定比例的原因,但現在克卜勒隱約領悟並認為「上帝是用幾何創造宇宙的」。

因此克卜勒開始展開了自己的調查,但他發現在二維平面上是行不通的,他又問了自己一次:「為何上帝只創造了水星、金星、地球、火星、木星、土星,這六顆行星?」

他聯想到了三維空間中的正多面體只有五種,克卜勒高興極了,他認為上帝是用「幾何」當作建材,並藉此來聯繫各個行星。

克卜勒的正多面體宇宙模型,克卜勒認為有 5 個正多面體可以被裝進一個大球體之中,並對應於當時已知的 6 個行星。圖/Wikimedia common

到了 1597 年,克卜勒發表《宇宙的秘密》(Mysterium Cosmographicum),這是克卜勒的第一本天文作品,同時也是歷史上第一本公開認同哥白尼理論的書籍,他迫不及待把自己發現的宇宙秘密隨機寄給其他天文學家,想要了解真正的專家將會如何看待自己引以為傲的觀點。

堪比古代交友軟體,一本書牽起了三人緣分

其中一本《宇宙的秘密》輾轉來到了義大利,到了一位還不有名的數學教授手中,這位數學教授告訴克卜勒:「我已經身為哥白尼的信徒很久了,私下也收集了一些能夠證明地球運動的物理現象唷!」克卜勒被他像是「回音」的名字逗樂,而這位數學教授的名字是——伽利略.伽利萊 (Galileo Galilei) 。

克卜勒鼓勵伽利略公開他的發現:「要對自己有信心啊!如果你是正確的話,或許一些學者會離你遠去,但真相就是最好的證據!」雖然克卜勒沒有馬上收到伽利略的回信,但未來兩人將會一起在不同地方,合作並支持哥白尼的日心說。

《宇宙的秘密》讓克卜勒認識了第谷(左)與伽利略(右)。圖/giphy

此外,也有一本書來到了第谷.布拉赫 (Tycho Brahe) 的手中,雖然第谷不認同克卜勒的觀點,但第谷看出了克卜勒的才華,並認為克卜勒擁有卓越的數學能力,只要擁有少數資料就能夠獨自建立預測模型。

雖然第谷回信稱讚克卜勒的巧妙的推測,但第谷認為哥白尼的觀測資料不太精確,因此第谷邀請克卜勒到自己的天文台工作,希望克卜勒能夠好好善用他更精準的觀測資料。

克卜勒獲得進入到當時一流天文台的機會,開始了他長達 20 幾年的天文研究。

《新天文學》:等面積定律的起源

《新天文學》(Astronomia Nova)在當時是一本與眾不同的天文書籍,它只單一討論一個行星的運動,克卜勒認為只要了解火星的運動,就等於了解其他行星的運動,但克卜勒卻沒有想到,了解單一行星的運動將會是一條崎嶇難行的道路。

克卜勒一直在思考如何將哥白尼的概念帶入到火星的運動上,首先,他根據行星「在近日點較快,在遠日點較慢」的物理現象了設立了距離規則:行星運行速度和行星到太陽的距離是反比關係。

在等面積定律中,太陽與火星的連線,會在相同的時間掃過一樣大的面積。圖/by RJHall , via Wikimedia Commons

克卜勒進一步將所有火星到太陽的距離加總起來,說明這就是火星繞行一周掃過的面積,面積能夠代表著火星走過的時間,克卜勒此時建立了我們今日熟知的第二定律「等面積」概念:相同時間內,行星掃過相同的面積。

《新天文學》:什麼?軌道不是圓的!

然而,當克卜勒將自己發現的「新穎物理方法」嘗試應用在偏心圓上時,卻出現了誤差,不過克卜勒心中沒有一絲動搖,他將結果和實際觀測資料比對,推測出火星軌道應該是「非圓」。

真正的軌道比想像中的扁平狹長,克卜勒用肉球來比喻,這就如同從肉球中間擠壓出來的形狀,克卜勒暫稱這個非圓軌跡為「卵形 (oval) 」。

1604 年,克卜勒寫信給自己的朋友,向他抱怨自己已經嘗試了 20 種不同的方法來產生卵形軌跡,卻產生出了和偏心圓相反的誤差。克卜勒推測真正的軌跡就會在圓形和卵形之間,並開始針對這個誤差專研,他認為自己距離真正的軌跡不遠了。

克卜勒行星橢圓模型的刻畫。圖/英譯版《新天文學》內頁

就在克卜勒窮途末路的時候,他突然從誤差中看到了一個常見的數字,一個克卜勒之前在修正火星距離中,曾出現過的數字。

在之前嘗試偏心圓的時,克卜勒發現偏心圓所得到的模型距離和實際觀測值會有誤差,需要經過一個簡單的修正才會符合觀測值,就在此刻他領悟到了這個修正的意義,這就是火星運行的秘密,具有物理意義的「徑向擺盪」,而從當今的數學視角來看,克卜勒的修正就是橢圓在極座標的距離公式: 1+ecosθ

克卜勒是個傑出的數學家,他雖然知道這是橢圓,但他不相信行星的秘密是如此簡單的圓錐曲線,他試圖用其他方法解釋徑向擺盪,但各種方法都沒辦法像橢圓一樣毫無誤差的精準預測。

橢圓定律中:行星沿著自己的橢圓軌道環繞著太陽運轉,而太陽位在橢圓的其中一個焦點的位置。圖/by RJHall, via Wikimedia Commons

1605 年,克卜勒領悟到橢圓本身就能代表行星運行的物理現象,他找到了「橢圓軌跡」的規則:行星以橢圓軌跡繞行太陽,而太陽在其中一個焦點上。

如今,這項橢圓的規則也成為了我們所說的克卜勒第一定律。

但克卜勒工作還沒有完成,他該思考究竟要如何說服當時的其他天文學家,直至 1609 年,克卜勒終於發表了《新天文學》,細心拆解了托勒密和第谷的行星系統,並建立了最精準的橢圓軌跡模型,克卜勒成了世上第一個「摸清行星運動的天文學家」

現在,我們已經知道《宇宙的秘密》、《新天文學》在天文學中的關鍵角色,下一篇文章中,我們將從《世界的和諧》這本書,找到最後一條定律的源頭,完成克卜勒成為星空立法者的最後一哩路……

註解

  1. 克卜勒認為第谷觀測資料的誤差最大到兩角分,而克卜勒用橢圓預測出來的火星位置都是角秒的誤差,由於克卜勒的預測結果都在觀測值的誤差內,基本上能夠說克卜勒的預測幾乎等同於實際觀測。

參考資料

  1. Aiton, E.J. (1969). Kepler’s second Law of Planetary Motion. Isis A Journal of the History of Science Society, 60, 75-90.
  2. Wilson, C. (1968). Kepler’s derivation of the elliptical path. Isis A Journal of the History of Science Society, 59, 5-25
  3. Gingerich, O. (1972). Johannes Kepler and the New Astronomy. Quarterly Journal of the Royal Astronomical Society, 13, 346-373
  4. James, R.V. (1999). Johannes Kepler and the New Astronomy. New York:Oxford University Press
  5. 姚珩、黃瑞秋 (2003)。克卜勒行星橢圓定律的初始內涵。科學教育月刊,第 256 期, 第 33-45 頁。
  6. 姚珩 (2004)。行星面積定律的建立。科學教育月刊,第 257 期,第 32-38 頁。
  7. International LaRouche Youth Movement. (2006). Presentation of Kepler’s Astronomia Nova.
  8. 維基百科:Rudolphine TablesHarmonices MundiJohannes KeplerMusica universalis
活躍星系核_96
752 篇文章 ・ 100 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
首度在四合星系統中發現系外行星
臺北天文館_96
・2012/10/18 ・925字 ・閱讀時間約 1 分鐘 ・SR值 494 ・六年級

一組由業餘天文愛好者和專業天文學家組成的「行星獵人計畫(Planet Hunters)」工作團隊,在一個由兩組雙星組成的四合星系統中發現一顆行星。這是第一次在這種四合星系統中發現系外行星。

行星獵人計畫由耶魯大學( Yale University)天文學家Meg Schwamb帶領下,發現這顆所謂的「環雙星系外行星(circumbinary planet)」,如其名,這顆行星環繞一對互繞的雙星公轉,公轉一圈約需138天;而這對雙星,彼此互繞的週期約為20天,且為一對食雙星,質量分別為太陽的1.5倍和0.41倍。但和其他環雙星系外行星不一樣的地方是:在這對雙星約1000AU遠之處,有另一對雙星,兩對雙星互繞,所以這實則為一個四合星系統(four-star ystem)。

到目前為止,天文學家只找到6顆環雙星系外行星,但全部都是單純的雙星,並沒有又和其他單星或雙星組成聚星系統。Schwamb表示:環雙星系外行星誕生的環境相當極端。在這類系統中發現行星,往往可促使我們深入思考行星如何能在這樣變化劇烈的環境中形成、聚集甚至演化。

這顆在四合星系統中新發現的行星,目前編號為PH1,即行星獵人計畫發現的第一顆系外行星的縮寫。Schwamb帶領業餘天文愛好者Kian Jek、Robert Gagliano等人,分析克卜勒太空望遠鏡(Kepler)的觀測資料,從而發現了PH1。克卜勒任務是利用凌日法來偵測系外行星,當行星經過恆星前方時,地球上將會看到恆星的亮度稍微下降的現象。發現PH1之後,Schwamb再與其他專業天文學家,利用位在夏威夷的凱克望遠鏡(Keck telescopes)做追蹤觀測;觀測結果確認PH1是顆半徑約為地球6.2倍的氣體巨行星,大約比太陽系中的海王星還大一點。

行星獵人計畫始於2010年,由耶魯大學天文教授Debra Fischer發起並執行,參與人數多達數千人。由於克卜勒任務的觀測資料非常龐大,如果不是透過這種方式,這個四合星系統中的行星很可能就在眼皮子底下溜過了。因此這個計畫不僅滿足的業餘天文者的參與感,同時也加速了專業天文學家發現的腳步,是種互利互榮的好研究方式。雖然現在有許多自動化技術可以自動分析克卜勒資料庫,但並不總是全然如天文學家希冀的那般有效率。這更突顯了行星獵人計畫存在的重要性。

資料來源:Armchair astronomers find planet in four-star system. Yale News [October 15, 2012]

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 29 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!