3

0
0

文字

分享

3
0
0

住在食物裡的蝦子

陸子鈞
・2011/08/06 ・779字 ・閱讀時間約 1 分鐘 ・SR值 455 ・五年級

如果你喜歡吃果凍,那住在巨大果凍挖出來的房間裡,餓得時候就挖一口,應該是件很完美的事,海綿蝦(Typton carneus)應該就是這故事的主角,這種鮮豔橘色外表的小蝦,住在活的海綿中。科學家現在發現,它們不只把海綿當做棲身之所,還會吃它們的房子。

直到最近,科學家才發現這種小蝦,因為它們體型不會大於1.5公分,也很少離開它們在海綿裡頭建造的通道。但現在科學家已經鑑定出很多樣的海綿蝦,其中一種甚至在海綿中形成類似蟻窩的聚落。

科學家一直假設海綿蝦是「寄生」於海綿中,因為小蝦會咬下海綿,造它們躲藏的掩蔽所,但卻只有在兩支海綿蝦類群中,找到行為上的證據。為了要證實寄生關係普遍存在於海綿蝦廣泛的種類中,查理大學(Charles University)的生態學家 Adam Petrusek和他的同事,先在中美洲貝里斯收集海綿並檢視組織。結果發現,約有34%的海綿裡住有海綿蝦。

另外的證據是海綿蝦的螯。研究團隊利用電子顯微鏡掃描,發現小蝦的第二對足,看起來是具「有特殊意圖」的工具。研究團隊認為,這對螯不像是用於防禦或打鬥,Petrusek說:「海綿蝦的第二對足和一般的龍蝦或螃蟹不同,比較像是一把剪刀。」

研究團隊除了看到蝦界的「剪刀手愛德華」之外,還解剖了海綿蝦的胃,發現海綿片段,進一步證實了小蝦會把海綿吃進肚子裡。除了T. carneus,這種海綿蝦以外,它的表親 T. distinctus也有類似的一對剪刀。Petrusek預期,寄生關係應該會普遍存在於其他「海綿房客」動物中。

然而,或許海綿蝦不是惡房客。海綿再生的速度很快,海綿蝦的飲食習慣可能不對它造成影響;海綿蝦也許也有提供給他的房東一些好處。雄蝦會揮動他的螯,趕走其他要闖進海綿的入侵者,像是會啃食海綿的海星。另外,海綿蝦習慣雌雄成對居住在單一海綿中,能確保海綿不會收到過量的房客而影響居住品質。

資料來源:ScienceNow: Shrimp Hurt the Sponges That Shelter Them [29 July 2011]

文章難易度
所有討論 3
陸子鈞
295 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

4
2

文字

分享

0
4
2
霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!
寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
172 篇文章 ・ 609 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

10
0

文字

分享

1
10
0
為什麼《鐵線蟲入侵》的人們被寄生後,會不由自主地跳水?——淺談行為操縱假說
ntucase_96
・2022/01/10 ・2285字 ・閱讀時間約 4 分鐘

許多寄生生物的生長發育階段和繁殖階段必須要經歷寄主轉換才能延續,也就是說,如果寄主轉換的傳播失敗,那麼該寄生生物將無法完成生活史、沒有後代,該寄生生物也將消失。寄生生物面臨這些潛在的生存困境時,不一定只能坐以待斃,目前已發現多種寄生生物以特殊的方式,增加其寄主轉換傳播成功的可能性,而「行為操縱假說」即被視為寄生生物突破傳播困境的策略之一。

有些生物被寄生後,會做出違反天擇的行為

你看過電影「鐵線蟲入侵」嗎?當人們遭鐵線蟲感染後,紛紛不由自主地往水裡跳。為什麼人們被感染後會有這樣的症狀?鐵線蟲究竟做了什麼?

鐵線蟲是隸屬於線形動物門(Nematomorpha)的寄生生物(parasite),已知可寄生在多種節肢動物體內,全世界約有 300 多種。上述電影的概念取自於自然界中的實際案例:當螳螂意外捕食到被鐵線蟲幼蟲寄生的小型昆蟲後,鐵線蟲開始在螳螂體內發育成長,當鐵線蟲發育成熟後,會分泌特殊的蛋白進而控制螳螂的神經系統,並操縱螳螂跳水,此時鐵線蟲會游到水中進行繁殖以延續其生活史。

倘若鐵線蟲能寄生到人體,人類是不是也會被操縱而跳水?

在天擇的理論上,動物會做出有利自身的行為,例如:動物會選擇一個比較安全不易被驚擾的地方作為巢穴。然而,科學家卻發現,有些動物的特定族群(同物種)會做出不利於自身的行為,如:被鐵線蟲感染的螳螂;或是,該行為未必對自身不利,但是僅發生在少數個體上,如:斑點瓢蟲(Coleomegilla maculata)被瓢蟲繭蜂(Dinocampus coccinellae)寄生後會保護繭蜂的蛹不被天敵攻擊)。

Paragordius tricuspidatus.jpeg
線形動物門-鐵線蟲。圖/維基百科

為了增加傳播機會,我要控制你!

那麼,是否還有一些潛在的因素影響著牠們的行為,或是「控制」牠們的行為?

有鑑於此,科學家們觀察這些有特殊行為的動物們的生活史,並且發現了部分個體和其他生物共生時,會出現不同於其他個體的特殊行為,而這項行為未必對自身有益,進而提出了「行為操縱假說(parasite manipulation hypothesis of host behaviour)」:假定寄生生物會控制或改變寄主的行為,以增加該寄生生物傳播到新寄主的機會,藉此完成其生活史並且使其族群得以永續繁衍。

像是殭屍蟻(zombie ants)遭線蟲草屬(Ophiocordyceps spp.)真菌感染後會離群索居,前往適合真菌生長的環境;以及殭屍蝸牛(zombie snails)遭綠帶彩蚴吸蟲(Leucochloridium paradoxum)感染後,蝸牛的眼柄逐漸被其幼蟲填滿,慢慢地失去正常收縮功能,待幼蟲發育為成蟲後,綠帶彩蚴吸蟲開始在蝸牛的眼柄蠕動,吸引鳥類前來取食。

上述即為寄生生物藉由改變寄主的行為以增加傳播機會的經典案例。

然而,為什麼寄生生物要操縱這些寄主呢?許多寄生生物的生長發育階段和繁殖階段必須要經歷寄主轉換(一生中需要至少兩種以上的寄主)才能延續,意即,如果寄主轉換的傳播失敗,則此寄生生物將無法完成生活史,將沒有後代,此寄生生物也將消失;而「行為操縱假說」即被視為寄生生物突破傳播困境的可能策略之一。

寄生生物的行為操縱有沒有弊端?

寄生生物需要操縱寄主的原因有二,第一個原因是:該寄生生物的傳播途徑並非食物鏈中主要的途徑,例如:某寄生生物的傳播途徑需要寄主被掠食,然而寄主本身並非掠食者最偏好的食物;為了增加傳播,寄生生物進而操縱寄主的自殺行為,實際例子誠如上述的殭屍蝸牛。第二個原因則是:寄生生物可在單一寄主內的存活時間有限,因此需要操縱寄主以在有限的時間內完成寄主轉換以延續生活史。

「寄生生物的行為操縱」對於寄生生物而言看似有百利而無一害;然而,這真的是一件好事嗎?若以能量消耗的角度來看寄生生物的行為操縱,會發現幾個潛在的問題:

首先,寄生生物操縱寄主時可能會需要分泌一些化學分子,而分泌這些物質的同時會消耗大量的能量;其二為,當寄生生物從居住在自然環境中的可獨立生存的生物(free-living organisms)演化成絕對寄生生物(obligate parasites)後,在高度的選汰壓力下,因為寄主體內相對自然生態系安全且單調許多,許多病毒和細菌的基因體大小會傾向縮減,以降低能量消耗,如果寄生生物的 DNA 需要帶有分泌和行為操縱相關化學分子的基因片段,整體而言較不利於競爭;其三為,寄主行為的改變可能有利於更多種寄生生物生存,進而增加不同族群間的寄生生物競爭相同寄主,可能輾轉降低寄生生物本身的存活率。

簡而言之,「寄生生物的行為操縱」的目的是為了幫助部分寄生生物達到更有效的傳播;看似神奇,卻涵蓋了寄生生物在演化上潛在的風險,這也是為何並非所有寄生生物都會「操縱」寄主的可能原因。

那麼,喜歡做某件事情的我們,是否真的喜歡做某件事?我們是否也默默地被寄生生物操縱了呢?

參考文獻:

  1. Auld SKJR & Tinsley MC.(2015). The evolutionary ecology of complex lifecylce parasites: linking phenomena with mechanisms. Heredity 114: 125-132, doi:10.1038/hdy.2014.84
  2. Libersat F., Kaiser M. & Emanuel S. (2018). Mind control: how parasites manipulate cognitive functions in their insect hosts. Psychol. 1, doi: 10.3389/fpsyg.2018.00572
  3. Martin H. (2016). Host Manipulation by Parasites: Cases, Patterns, and Remaining Doubts. Ecol. Evol. 28
  4. Poulin (1994). The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology 109
  5. Schmidt-Rhaesa A. & Ehrmann R. (2001). Horsehair worms (Nematomorpha) as parasites of praying mantids with a discussion of their life cycle. Zoologischer Anzeiger 240 (2):167-179, doi:10.1078/0044-5231-00014
所有討論 1
ntucase_96
30 篇文章 ・ 580 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

1

7
3

文字

分享

1
7
3
陸上生命的根源:菌根菌——《真菌微宇宙》
果力文化
・2021/09/26 ・1538字 ・閱讀時間約 3 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者 / 梅林.謝德瑞克
  • 譯者 / 周沛郁

我們目前還不清楚菌根關係最初是怎麼形成的。有些人大膽提出,最初的相遇溼黏而沒有條理──藻類被沖上泥濘的湖岸和河岸,而真菌在這些藻類體內尋找食物和庇護。有些則主張,藻類來到陸地時,體內已經帶著真菌夥伴了。里茲大學(University of Leeds)教授凱蒂.菲爾德(Katie Field)解釋,不論如何,「它們很快就變得依賴彼此」。

常出現於兒童繪本的毒蠅傘,就是一種能與植物共生的菌根真菌。圖/WIKIPEDIA by R Henrik Nilsson

菲爾德是一位傑出的實驗者,投入多年的時間研究現存最古老的植物支系。菲爾德用生長箱模擬遠古的氣候,並用放射性示蹤劑,測量生長箱裡真菌和植物之間的交換作用。真菌與植物的共生方式提供了線索,讓我們了解植物和真菌遷移到陸地的最早階段是怎麼互動的。化石也讓我們一瞥這些早期的聯盟。最精細的樣本來自大約四億年前,含有明確的菌根菌痕跡──羽狀瓣和今日一模一樣。菲爾德讚歎道:「你可看到真菌居然就長在植物細胞裡。」

最早的植物幾乎只是一坨綠色組織,沒有根或其他特化的結構。而這些植物逐漸演化出粗糙的肉質器官來容納真菌同伴,真菌則搜尋土壤中的養分和水。最初的根演化出來時,菌根關係已經存在五千萬年了。菌根菌是陸地上後續所有生命的根源。菌根(mycorrhiza)這個詞真是取得好。根(rhiza)隨著真菌(mykes)存在於世。

數億年後的今天,植物演化出更細、生長更快、更能見機行事的根,這些根表現更像真菌。不過即使是這些根,探索土壤的表現也無法超越真菌。菌根的菌絲比最細的根細了五十倍,長度可以超越植物根部達一百倍,比植物根部更早出現在植物上,延伸到根系之外。有些研究者更進一步。我的一位大學教授向一班吃驚的學生吐露:「植物其實沒有根,只有真菌根,也就是菌根。」

毒蠅傘在樹的細根上形成的外生菌根。圖/WIKIPEDIA by Ellen Larsson

菌根菌太多產,菌絲體占土壤中活生物量的二分之一到三分之一。根本是天文數字。全球土壤表層十公分之中,菌根菌絲的總長度大約是我們銀河系寬度的一半(菌絲長 4.5 × 1017 公里,銀河系寬度 9.5 × 1017 公里)。如果把這些菌絲熨成一片,總表面積是地球上乾燥土地面積的二點五倍。然而,真菌不會停滯不動。菌根菌絲迅速死去、再度生長(一年十到六十次),一百萬年後,累積的長度會超過已知宇宙的直徑(菌絲長 4.8 × 1010 光年,已知宇宙直徑是 9.1 × 109 光年)。菌根菌已經存在了大約五億年之久,而且不限於土壤表層十公分的地方,所以這些數字顯然低估了。

植物和菌根菌在彼此的關係中產生一種極化現象──植物的莖處理光與空氣,真菌和植物的根則處理周圍的土壤。植物把光和二氧化碳打包成醣類和脂質。菌根菌則把固著在岩石裡的養分拆開,分解物質。這些是真菌在雙重棲位下的情況──真菌一部分的生命發生在植物體內,一部分在土壤中。菌根菌駐紮在碳進入陸生生命循環的入口,牽起大氣和土地的關係。時至今日,菌根菌就像擠進植物葉和莖裡的共生真菌,會幫助植物應付乾旱、炎熱和其他許多陸地生命一開始就有的逆境。我們稱為「植物」的,其實是演化成來栽培藻類的真菌,以及也演化來栽培真菌的藻類。

——本文摘自《真菌微宇宙:看生態煉金師如何驅動世界、推展生命,連結地球萬物》,2021 年 8 月,果力文化

所有討論 1
果力文化
3 篇文章 ・ 4 位粉絲
以本土自製書系、獨到翻譯選書,提出創意的解讀;以創新編輯體例、設計風格、雜誌化的圖文整合。提供嶄新的觀點、有趣的知識、生活的提案。果然,為讀者創造閱讀的驚喜。