0

0
0

文字

分享

0
0
0

高處不勝寒的高階草原狒狒

葉綠舒
・2011/07/15 ・429字 ・閱讀時間少於 1 分鐘 ・SR值 428 ・四年級

要當美猴王並不容易,由於草原狒狒(savanna baboons, Papio cynocephalus)的猴王的權力經常受到低階狒狒的挑戰,他們可以說是每天都跟壓力共存。

每天生活在壓力下,使得他們的分泌的壓力賀爾蒙(stress hormone, 在本文中為testosterone and glucocorticoid)量與低階狒狒不同。

科學家們分析草原狒狒的糞便,發現最高階的草原狒狒(alpha male)的testosterone(睪固酮)以及glucocorticoid(腎上腺糖皮質素)含量較低階的草原狒狒高了數倍,而較高階的草原狒狒 則是睪固酮較高但腎上腺糖皮質素較低。這個現象,即使在階級相當穩定的草原狒狒族群裡也一樣。

由於之前的研究發現,生活在持續的壓力下會造成免疫系統功能障礙,同時對健康也不好。在大猩猩的研究也發現,階級較高的大猩猩分泌較多的睪固酮,但腸道裡面的寄生蟲也比低階的大猩猩要多得多,可見對靈長類來說,位高權重其實並不是如大家想像的那麼開心,事實上這些上位者在健康上也付出了相當大的代價喔!

-----廣告,請繼續往下閱讀-----

參考資料:ScienceShot: It’s Lonely—And Stressful—At the Top [14 July 2011]

文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
狒狒之死,動物園的哪個環節出問題?
科學月刊_96
・2023/06/20 ・3099字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/林翰佐
    • 本刊總編輯,主修動物學
  • Take Home Message
    • 今(2023)年3月,一隻東非狒狒突然現身桃園地區,在混亂的捕捉行動後,狒狒中彈身亡。
    • 除了讓民眾休憩,動物園更具備自然保育教育的使命。不過由於園區管理困難,動物脫逃事件比你想像得多。
    • 若是動物園的存在仍具社會意義,動物脫逃又難以避免,社會應負起責任,以更人道的方式處理這類事件。

變調的暖心劇

春暖花開的3月,臺灣上演著一齣「動物星球」般的實境連續劇:一隻來源不明的東非狒狒(Papio anubis)在桃園地區突然現蹤,在社會上引起一陣漣漪。隨著目擊者們在網路上的分享,狒狒活動的消息開始在臺灣社群蔓延,甚至有熱心的網友繪製牠行蹤路線圖供民眾參考。農政單位也利用媒體提出警告,稱狒狒屬於兇猛的靈長類生物,呼籲狒狒活動區域中的居民需要多加留意,並提供民眾遭遇狒狒時的基本指引:

遇到狒狒時手中不要有食物,避免吸引其覓食接近…務必放下食物遠離牠,以避免遭受攻擊,確保自身安全。

實際與狒狒近距離遭遇的群眾,緊張之餘似乎也帶著一點興奮之情。據目擊者稱,這隻謎之狒狒並非想像中那般窮凶惡極,不僅會主動避開人群,也具有良好的生活紀律,在進食後還會將果皮整齊地擺放後離去。整個系列新聞宛如臺灣版《狗狗猩猩大冒險》(パン&ジェームズのおつかい大挑戦!),而狒狒屢次逃脫搜捕的劇情又有如《湯姆貓與傑利鼠》(Tom and Jerry)般的曲折,在忙碌的塵世生活中平添一些清新。

在狒狒現蹤後的第 18 天,編制混雜的搜捕隊終於發現了狒狒藏身處,一陣警匪對峙般的攻堅行動中狒狒胸部中彈身亡,一齣暖心劇最終以血腥收場。


狒狒是什麼樣的動物?

狒狒屬於猴科(Cercopithecidae),在物種分類關係上,相較於紅毛猩猩,牠與臺灣獼猴(Macaca cyclopis)的血緣更近一些。世界現生的狒狒大約可以分為五種,分布在非洲與阿拉伯半島東側的紅海之濱,大多落腳於草原、稀樹草原或灌木叢區,和大多選擇森林作為棲所的靈長目動物大相逕庭。科學家相信,狒狒因此發展出與其他靈長類動物不同的外貌,包括長得像犬科動物般突出的口鼻部、鋒利的犬齒、近距離的雙眼、厚重的皮毛、短短的尾巴等。現今學界認為的靈長類演化方向是口鼻部的扁平化,兩眼由側面調整至前方,以換取較好的立體視覺,作為森林間擺盪、穿梭時對距離有更好的掌握,狒狒的這番操作有些背道而馳。

狒狒是猴科中最為剽悍的一支,牠們生活在天敵環伺的草原及疏林,缺乏森林的保護,因此洪荒之力是生存唯一的支撐。據信早年英國探險隊在非洲初見雄性狒狒力抗花豹,相互撕咬的景象相當震驚。狒狒通常為群體生活,由一隻雄性、數隻雌性及幼體組成一個基本家庭單元,然後由數個家庭組成更為大型的「部隊」(troop)集體行動,一支部隊的總個體數約 50~250 隻,但也有更小或更大的族群。狒狒是雜食性的機會主義者,幾乎什麼都吃,破壞性極強,在當地居民的眼中應該不是什麼善類。不過在古埃及,阿拉伯狒狒(Papio hamadryas)被視為是月神托特(Thoth)的化身,有趣的是,在古埃及諸神化的動物之中(豺狼、河馬等),只有阿拉伯狒狒並不是埃及原生的物種。

東非狒狒(Papio anubis)。圖/wikipedia

所以儘管狒狒的外貌並不出眾,其實還是一種相當有故事性的物種。


動物園的社會定位

動物園幾乎是絕大多數人的童年回憶,不過很少人會認真思考它在社會中的定位。如果有一群動物需要以終生監禁為代價,以近乎全年無休的犧牲成就大眾人生中的美好,我們似乎應該負責任地為牠們找個好理由。

從歷史的角度來看,動物園的形成與馬戲團有相當深厚的影響。事實上臺北動物園據信最早就是由馬戲團演變而來。早年的動物園以提供民眾休憩、活動為主要目的,除了展示來自世界各地的奇珍異獸之外,也推出動物表演秀等節目娛樂大眾。當時代更迭,動物保護意識抬頭,動物園的本質產生相當大的轉變;設計籠舍時開始考量動物的各項生理需求,除了空間與配置,也會控制溫度與光週期,盡量讓這些住客有家的感覺。動物園的使命也從單純的休憩娛樂,轉而成為教育及保育的平臺。

現今的文明世界需不需要動物園?支持者或許認為動物園的存在仍然具備相當的自然科學教育意涵。但其實現代社會資訊發達,透過拍攝生物在原生棲地生活的影像資料,常常能提供更為正確而鮮活的認知。只是因為想看看這些動物就必須將牠們終生監禁,不知道動物們能否接受這樣的理由?

這裡想要表達的重點是,即便到了 21 世紀,動物園仍繼承著人類對動物好奇的各種欲望需求,不論是教育目的還是休憩。這些動物大使們有如漢朝蘇武持節般遠渡重洋,遭受無限期的拘留,為人類及其自身種族之間搭起一條相知的橋樑,這樣的犧牲是否應該值得我們這個社會給予更高規格的尊重?

動物脫逃事件其實比你想像的多

筆者大學時期主修動物學,並在年輕歲月時擔任臺北市立動物園義工達三年之久,對動物園的實務運作有所了解,也在服務期間聽了很多的鄉野傳奇故事。雖說都是豢養動物,但想要管好動物園,挑戰比一般農場複雜許多。

動物園管理有如電影中某國聯邦的重刑犯監所,裡面收容的「大哥角頭」各異:兇猛的、高智商的,或者兩者兼備的都有,比起農場裡那些「傻白甜」的家禽和家畜,管理難度完全不是同一級別。即便是「臺灣第一」的臺北市立動物園,動物脫逃的故事還是有如《一千零一夜》(One Thousand and One Nights)中的童話故事般豐富。「緝捕歸案」其實是這些故事裡主角最好的結局,不過依照臺北市立動物園的公開新聞訊息,動物脫逃處理 SOP 中的第一條便是取槍——麻醉槍及上膛的獵槍都要。為了避免困獸傷人,「滅口」永遠是一個選項。

動物園該負整體事件全權責任嗎?

猴命鬧上新聞了,自然要追究事件的責任。謎之狒狒最後確定為六福村動物園所有,動物園因此公開坦承疏失,並果斷地執行人事懲處。新竹縣政府農業局身為主管機關,也以「未妥善管理導致脫逃,在狒狒脫逃後又並未主動通報」的理由,依現行的《野生動物保育法》第 37 條規定,祭出罰鍰五萬元的最嚴重處罰。由於民憤難平,所以中央主管機關農委會林務局適時地提出《野生動物保育法》修正草案:「逸失保育類野生動物未通報,罰鍰自一萬至五萬元,上修為三萬至十五萬元,並由飼主負擔圍捕費用⋯⋯」。

綜觀整件事件的善後,弦外之音有著「猴子是你家跑的,簍子是你捅的,所以罰你」的傳統直線邏輯,彷彿只要猴子不跑,世界便一片靜好。如果說動物園的存在仍然具備一些社會意義,而動物脫逃也難以完全避免,這個社會是否應該負起更大的道義責任,以更為人道的方式處理這類的事件?例如由中央協助跨縣市動物園間整合野生動物獸醫資源、透過工作坊精進各種野生動物誘捕回籠的技巧、組建可以相互支援、快速部署的反應小組等。

狒狒已死。筆者希望的是更多動物保護意識的喚起,進而化為行動,讓住在臺灣的這些動物大使有更為人道的對待——不論是住在裡頭,還是基於野性呼喚偶爾的外出放風。

  • 〈本文選自《科學月刊》2023 年 6 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3693 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。