0

0
1

文字

分享

0
0
1

春節恐慌症:為什麼老愛問我畢業、工作、有對象了沒?

海苔熊
・2014/01/31 ・4749字 ・閱讀時間約 9 分鐘 ・SR值 472 ・五年級

眼前大伯二姑等親戚朋友們都堆積在客廳打麻將,叫囂著、嗑著瓜子、一邊哄孩子、整家子鬧哄哄的,只差沒把屋頂掀了。所謂親戚就是平時跟你一點都不親近,但逢年過節的殷切問候,卻好像跟他們與共休戚似的那些人<1>。

[2016新春新增:真的想知道如何因應的(非搞笑),請讀文末急救包]

為什麼你的家人、親戚老愛關心你到底有沒有對象、什麼時候要生小孩、賺多少錢、在哪裡工作呢?他們難道不知道這麼久沒有見,一見面就問侵略性這麼強的問題,會讓你想燒毀他們、跟他們斷開一切的牽連嗎?又為什麼,我們會這麼害怕過年?

第一種可能是,其實你怕的不是過年,而是怕在人群中做自我揭露(self-disclosure)。這個揭露涉及的人太多,讓你覺得很不安。一般來說,兩個人比較容易講心事,因為你可以透過對方的回應修正自己的內容,重新澄清彼此的想法,也可以保護自己的隱私[1],可是團圓飯桌上的對話,常常是你來我往,誰也沒有真正想了解誰,只是為了挖八卦、不要讓話題太乾,這時候的揭露既沒有品質,也沒有深度。

-----廣告,請繼續往下閱讀-----

說得多,還是說得深?

一般來說,自我揭露可以分成兩種[2]:

1.描述性的自我揭露(descriptive disclosure):例如聊聊職業、星座、血型、收入

2.評估性的自我揭露(Evaluative disclosure):談談個人的意見、感受、價值觀、e-tag或馬英九等等。

面對這些不熟又不是陌生人的人,一年或許只見這麼一次,甚至在捷運上撞見都會裝作不認識,在這尷尬的過年同桌吃飯,到底要說些什麼呢?我們大多都停留在描述性的自我揭露,就算有評估性的自我揭露,也只會停留在表面的層次(superficial level) [3],比方說你去看圓仔了嗎?聽說大稻埕很好看、你知道那個MC美江嗎?敲好笑的!

-----廣告,請繼續往下閱讀-----

大多數的時候,我們對描述性的自我揭露不會有太多排斥或害怕的感覺,因為這也是我們對他人形成印象(impression formation)最快的方式(雖然也有可能只是刻板印象)。這就是為什麼,你朋友跟你提到最近她認識一個人不錯,你也是會先從他的性別、工作、星座、住哪裡等等問起;而在工作場合或互相介紹朋友認識的時候,也會先提到他的職業,然後註解一下是否單身之類的。

弔詭的是,為什麼這些日常的介紹對話不會讓你感到焦慮,可是圍爐拜年就會讓你想挖地洞逃跑呢?因為在知道職業和單身與否之後,親戚往往會問更多。所以第二種可能是:我們怕的不是過年,也不是自我揭露,而是在揭露之後的評估(evaluation)與社會比較(social comparison)[4]。

在說了之後

其實,對於不太熟的人,我們大多願意聊自己的嗜好、興趣、態度、政治與宗教意見,卻避談有關自己的事情,例如財務狀況、性格、性、或人際關係[5, 6],一方面是這些內容涉及較多隱私,另一方面是我們害怕說了之後對方接下來的反應。

如果你鼓起勇氣坦承剛遞辭呈、到現在博士還沒有念畢業、甚至已經單身兩年了還沒有對象,那麼接踵而來的就是讓你充滿壓力的關心──那你找到新工作了嗎?怎麼還沒領年終就先走呢?什麼時候要畢業?念這麼久有什麼用,出來還不是賣雞排?舅媽公司有一個男孩子還不錯,其實女孩子不用念太多書……沒有人真正關心你在公司裡過得好不好,主管是不是人,也沒有人在乎你論文遇到什麼瓶頸,甚至你舅媽根本不清楚你交的是男朋友還是女朋友,就亂點鴛鴦譜

-----廣告,請繼續往下閱讀-----

kikinote_outland_ad-girl

「小敏,上次和你一起去洗溫泉那個後來還有聯絡嗎?」大阿姨漠不關心地說,一邊夾著桌上的豬腳放進碗裡。

「都28歲了,差不多該找個對象穩定下來了。我有生之年不知道能不能抱到你的金孫呢,我像妳這麼大的時候,就生你爸了……」奶奶沒幾個牙,但說話倒是清楚地很。

「小敏阿,以前阿爸就跟你說,挑人的時候眼睛要亮一點,不要什麼都說好阿,有一天會吃虧的。像你姊夫就很棒啊,在科技公司上班,年終獎金一頒就20多個月,找老公就要找這種的!」接著你爸也加入戰局,不是本來都說找一個愛你的人最重要嗎?怎麼才上牌桌,有開始希望你找有錢的?

「爸,我想說才剛換工作,先穩定下來再說。」你心裡其實很想反駁,上個月月中姊不是才跑來跟你說,姊夫已經兩週沒有回家睡了?到底是誰比較幸福? 

-----廣告,請繼續往下閱讀-----

看吧?兩句內必定評估你,三句不離社會比較。人類是很奇怪的生物,就像蔡老師所說,我們就連年夜飯也要PO上FB跟大家炫耀一下,搞得每年除夕都像中國廚藝競賽網路版的樣子。為什麼平常這些說「做你喜歡的事情就好」、「找一個愛你的人比較重要」的「開明」家人,一到親戚朋友面前全變了樣,還是拿財富、地位、小孩生沒來評價你?

一張圓桌,搭載許多恐懼與需求

他們要的東西其實很簡單,就是「面子」。蘇珊筠與黃光國調查了大學生和退休老人,結果發現老年人跟青少年最大的不同,在於老年人較在乎家族中的關係與輩份,也對「子女品德」與「子女成就」的正向事件感到最有面子[7]。所以,當你阿公在三叔公面前提到你剛從美國留學回來,或是你外婆要你跟二嬸的孩子多學學去考個證照,一方面是在「操作」他們在家族中的權力和地位,另一方面是藉由子孫的表現,來跟安慰自己此生無憾,可以含笑九泉,但他們卻不知道,他們笑的每一泉,都是用你的心酸和尷尬所堆疊。

到頭來你會發現,你之所以害怕過年,是因為親戚朋友們只是用自己以為的方式,給予關心,卻從來不知道,一句真正有品質的關心,一段讓你放心的自我揭露,是建立在親密、信任而穩定的關係上面的[8, 9]。如果這一整年都只有婚喪才同桌吃飯,所有的問候與關懷不但讓人覺得心不在焉,也會令回答者覺得可有可無(姑丈,上次你來我們家我就說過了阿,我剛到一個協會工作……)。

總而言之,年節恐慌的現象說明三件事情:

-----廣告,請繼續往下閱讀-----

(1)我們怕在不熟的人面前自我揭露、怕尷尬

(2)我們怕後續的評估與社會比較(尤其是和同輩比較)。

(3)但那些親戚朋友還是愛問愛給建議,因為他們透過詢問得到面子與權力

所謂長大,就是從期待過年,變成害怕過年,再變成期待過年的過程。

-----廣告,請繼續往下閱讀-----

而在這份害怕的背後,或許有很多被預設的不合理,當親密感與揭露深度不對等,當每句話都有被評估比較的可能,恐懼與害怕便油然而生。可是在這張圓桌的另一頭,那些年紀兩倍於我們的白頭們在乎的,是一種「與有榮焉」與「子孫滿堂」的需求。一年過去了,兩年過去了,自己的日子不知道還剩多少,大家聚少離多,還有多少時間,能再看看兒孫家人的側臉?

血濃於水的連結

為了躲避那些叔伯嬸姨的十萬個為什麼,我索性龜到阿嬤的房裡,陪阿嬤聊聊天。

「ㄚ頭,最近過得好不好?」她倚在床邊,笑瞇瞇地問我。

「喔,就和以前都差不多阿。」我心想完蛋了,再來一定是問交男朋友了沒、要開始找了喔!什麼時候要畢業?要不要阿嬤幫妳介紹之類的。果然逃到阿嬤這邊也是一樣沒有用的。

-----廣告,請繼續往下閱讀-----

可是,這些問題都沒出現,阿嬤只是把我叫過去,摸摸我的臉。

「ㄚ頭來,阿嬤看看、阿嬤看看。阿嬤很久沒有看到妳了。喔,長這麼大了阿……,妳讀大學之後就常常出國,放暑假都沒有來看阿嬤,阿嬤會想妳知不知道。唉,妳媽媽都沒有好好照顧你,怎麼把妳養得這麼瘦,以前阿嬤養妳的時候,都胖嘟嘟地像西瓜一樣……放假若有空,把功課拿來這裡做,阿嬤照顧你三餐。有時我看那些少年郎載一些妹妹咻一下、咻一下上山來厚,就在想那些妹妹裡面會不會有一個是妳……」我聽完真是哭笑不得。阿嬤一邊說,一邊用粗粗的手捏捏我的臉,好像在看這斤豬肉好不好賣似的。

原來,當整張桌子的人都要你減肥的時候,還是有人會關心你有沒有吃飽、穿暖;當大家都只是把職業薪水與未來拿來配飯,還是有人會關心你的現在;當全世界的人都要你趕快找個好男人嫁了,還是有人會在乎你過得快不快樂,還是有人,默默地想念你。

「今年你們十三個孫子都有回來,阿公好開心、好開心……」爺爺菜都還沒吞下去,就重複地說著,臉上堆滿笑容。

縱然年節的聚會裡,瀰漫著各種尖銳害怕與恐懼,知道這些恐懼的原因並不能減少我們的擔心,但至少,我們還是可以嘗試對那些真心想念,卻又很少遇見的人付出真誠的關心,還是可以,在各種虛假與場面話的後面,看到這些血濃於水的連結。

[返鄉過年護身符]

相信大家都應該還蠻有感的,那些每年掛在嘴巴上面說的「身體健康,萬事如意」根本都只是拿來說心安的而已,因為很多時候光是大家團聚在一起,就很難萬事如意了。

這幾天發生的災情,更讓我們珍惜與身邊的人團聚的時刻,但「團聚」既然是一群好久不見的人的相遇,同時也意味著許多的議題互相糾葛。

你可能會遇到,明明自己表現得不怎麼樣,但是又喜歡挑剔別人的親戚朋友;也可能需要見到,一直以來關係緊張,卻又還沒有準備好面對的父母家人;更有可能在組成新的家庭之後,需要去進入另一個原生家庭的生活。每個人都背負著彼此的故事、童年未解的結、一年下來累積的鳥氣,最深的羈絆通常也會攜帶最多的情緒。

在面對這些的時候,我自己也覺得從來不是容易的事情,不過這段時間,我有幾個很棒的體會,或許可以在年關的時候讓大家在餐桌上派上用場(相信我這些絕非搞笑有沒有實際作用的方法)。

1.有些情緒不是針對你:

有些家庭可能在大掃除、煮菜、拜拜的時候就火藥味十足,如果你總是被攻擊的那一個,或許可以在心裡面幫自己做一個區隔——那些看起來針對你的情緒,很多的時候是其他家庭成員互動之下的垃圾,而你剛好只是代罪羔羊(scapegoating)而已。你永遠有選擇,不一定要把那些責備、酸言酸語、雙面訊息吃下來,因為往往最令人難過的並不是別人說了你什麼,而是你自己也這麼相信那些「什麼」(關於非理性信念對心理適應的影響,請參閱此文)。

2.看見投射:

我相信有些家庭成員對你來說具有「原生性的恐懼」,你可能還沒回家之前就一直在想他會說什麼樣的話來讓你感到難堪。我覺得在這之中我們要練習長出一種能力是——有些時候對方的語言看似在責備或嫌棄你,但也有可能是你表現出了「他自己一直壓抑又不敢做的事情」,而他透過貶低你來感到心安。更多的時候他看起來是在責罵你,實際上是在責罵自己(關於投射的科學研究,請參閱此文)。

3.且戰且走:

嘗試讓自己深呼吸,慢下來,必要時,你仍然可以選擇暫時逃跑,不一定要強迫讓自己待在讓自己感覺不舒服的空間。沒有人規定過年的時候,腳就要還給家人。

其實過年的護身符,說穿了就是一種課題的分離。練習把對方的課題還給他們,你的空間就會是屬於你的。

新的一年,儘管不能諸事如意,也但願勇氣能夠常駐於心。

[註解]

  1. 文首末故事(紫色字)取自去年的賀歲(?)作:阿嬤的愛情秘密
  2. 有鑑於去年的賀歲鉅片<這真的是我要的婚姻嗎?二十個藏著「但是」的婚姻殺手>太長了,今年特別因應潮流,走短小精悍的風格。
  3. 由於據不才小熊所知並未有研究專門針對「年節恐慌」進行探討,此篇提出一些可能性討論之,僅供大家參考,也歡迎大家一起切磋討論。本文之推論與結論也尚未進行概念檢驗。
  4. 文首照片修改自這裡
  5. 作者網誌原文

[參考資料]

  1. Solano, C. and M. Dunnam, Twos’scompany:self-disclosure and reciprocity in triads versus dyads. Social Psychology Quarterly, 1985. 48: p. 183-187.
  2. Morton, T.L., Intimacy and reciprocity of exchange: A comparison of spouses and strangers. Journal of Personality & Social Psychology, 1978. 36(1): p. 72-81.
  3. Ivey, A. and J. Authier, Microcounseling: Innovations in Interviewing, Counseling, Psychotherapy and Psychoeducation. 1978, Illinois: Springfield.
  4. 林以正, 華人的社會比較:比較什么?與誰比較?為何比較?. 本土心理學研究, 1999(11): p. 93-125.
  5. Jourard, S.M., Self-disclosure. 1971, New York: Wileey.
  6. Chen, G. M., Differences in Self-Disclosure Patterns among Americans Versus Chinese A Comparative Study. Journal of Cross-Cultural Psychology, 1995. 26(1): p. 84-91.
  7. 蘇珊筠 and 黃光國, 退休老人與大學生在生活場域中的關係與面子. 中華心理學刊, 2003. 45(3): p. 295-311.
  8. 許育光, 諮商團體成員自我揭露因素之歷程變化分析. 教育心理學報, 2011. 42(4): p. 655-676.
  9. 吳秀碧, 許育光, and 李俊良, 諮商團體歷程中成員自我揭露頻率與深度之初探. 彰化師大輔導學報, 2003(25): p. 1-24.
-----廣告,請繼續往下閱讀-----
文章難易度
海苔熊
70 篇文章 ・ 474 位粉絲
在多次受傷之後,我們數度懷疑自己是否失去了愛人的能力,殊不知我們真正失去的,是重新認識與接納自己的勇氣。 經歷了幾段感情,念了一些書籍,發現了解與頓悟總在分手後,希望藉由這個平台分享一些自己的想法與閱讀心得整理,幫助(?)一些跟我一樣曾經或正在感情世界迷網的夥伴,用更健康的觀點看待愛情,學著從喜歡自己開始,到敏感於周遭的重要他人,最後能用自己的雙手溫暖世界。 研究領域主要在親密關係,包括愛情風格相似性,遠距離戀愛的可能性,與不安全依戀者在網誌或書寫中所透露出的訊息。 P.s.照片中是我的設計師好友Joy et Joséphine

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
3

文字

分享

0
2
3
大家都認為自己值得更多的薪水!給你更多錢會提升工作表現嗎?——《超越直覺》
一起來
・2024/05/02 ・1949字 ・閱讀時間約 4 分鐘

框架問題理應提醒我們,我們只要自動腦補就一定會犯錯。我們確實向來如此。不過「人類」這個對象不同於 AI 研究人員開發的機器人或電腦,並不會讓我們訝異到必須被迫改寫思考時的整個心智模式。相反地,一旦我們知道答案,就似乎總能找出先前被忽略、後來明顯相關的面向,就像拉扎斯菲爾德假想的《美國士兵》讀者——他們在事後發現,每一個對立的結果都同樣理所當然。

也許我們原本預期自己中了樂透之後會超級開心,結果中獎之後,卻發現自己很鬱悶,這個預測顯然很糟糕。但當我們意識到自己預測錯誤時,同時也獲得新的資訊,例如那些突然出現要借錢的親戚。於是我們會心想,如果早點知道這些資訊,就可以正確預測未來的幸福狀態,也許就不會去買樂透彩了。

因此,我們沒有質疑自己預測未來幸福程度的能力,反而只是認為我們漏掉了一些重要的東西,並且確保自己不再犯相同錯誤。然而我們卻一錯再錯。事實上,無論對於他人行為的預測失準了多少次,我們總是可以用當時未知的事情做為辯解。透過這種方式,我們掩蓋了框架問題,一再說服自己下次會做好,卻永遠都不明白我們真正錯在哪裡。

圖/envato

這種行為模式在動機與金錢報酬的關係中最為明顯,也最難消除。例如,實施金錢獎勵制度顯然能提升員工表現,而且數十年來,職場上大幅出現以績效為基礎的薪資制度,最具代表性的就是高階主管薪酬與股價掛鉤。

-----廣告,請繼續往下閱讀-----

當然,員工在意的顯然不只薪水,還有內在的愉悅感、認同感,以及在個人職涯上的成長與晉升等因素,這些都會影響工作表現。

在其他條件都相同的情況下,適當的金錢獎勵可以提升個人表現——這似乎理所當然。然而,多年來有多項研究顯示,薪酬與工作表現之間的關係,實際上的複雜程度讓人難以想像。

舉個例子,最近我跟雅虎(Yahoo!)的同事梅森(Winter Mason)進行了一系列網路實驗。我們給予受試者不同的薪資,並要求他們執行各種簡單的重複性工作,例如:按照正確的時間順序排列一組車流照片,或是在矩形網格上,找出隱藏在一堆英文字母中的英文單字。

所有受試者都是在亞馬遜土耳其機器人(Amazon’s Mechanical Turk)這個外包網站上招募而來,這個網站是亞馬遜公司於二○○五年推出,原先是用來找出重複的庫存商品。現在有數百家企業使用土耳其機器人進行「群眾外包」(crowd-source),處理五花八門的各種任務,像是標示圖片中的物品、描述新聞報導的觀點,或是判斷兩種說法中哪一個比較清楚。這個網站也是招募心理學實驗受試者的一個有效方法,就像心理學家多年來在大學校園裡張貼廣告那樣,不過土耳其機器人網站的「託客」(turkers)完成一件任務的報酬通常只需要幾美分,只占了研究經費的一小部分。

-----廣告,請繼續往下閱讀-----
圖/envato

我們的實驗總共納入數百位受試者,完成了數萬件任務。有些受試者完成一件任務只能得到 1 美分的酬勞,例如整理一組圖片、找出一個單字。但是,有些受試者完成相同任務卻會得到 5 美分或 10 美分。這在工資上是相當大的差異,要知道,美國電腦工程師的平均時薪只有聯邦最低工資的六倍,所以你可以預期這個工資差異會對受試者的行為產生強烈影響。

結果確實如此。我們付的錢越多,受試者離開實驗之前完成的任務就越多。我們還發現,不管工資多少,分配到「簡單」任務(每一組有兩張圖片需要歸類)的人,比分配到中等或困難任務(每一組有三至四張)的人完成更多任務。換句話說,這些都符合常理。

但接下來的問題是:雖然存在上述差異,我們發現這群受試者的工作品質,也就是歸類圖片的準確度,並不會因為工資不同而下降,即使只有正確完成才能拿到酬勞。

該如何解釋這個結果?我們並不十分確定。在受試者完成任務之後,我們問了一些問題,包括他們認為自己的工作該得到多少報酬。有趣的是,他們的回答與工作難度無關,而是取決於獲得的工資。平均而言,每件任務得到 1 美分的受試者,認為自己該得到 5 美分。得到 5 美分的認為自己該得到 8 美分,而得到 10 美分的則認為自己該得到 13 美分。

-----廣告,請繼續往下閱讀-----

換句話說,不論他們實際上得到多少(還記得有些受試者的工資是別人的十倍嗎),每個人都覺得工資過低。大家在直覺上會認為,給予金錢獎勵就能夠提升員工的動機,但這個實驗告訴我們,即使是非常簡單的工作,工作動機也會因爲員工的權利意識提升而大幅減弱。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。