0

0
0

文字

分享

0
0
0

【2013回顧】PNAS 十個細菌小故事(下)

陳俊堯
・2014/02/04 ・3506字 ・閱讀時間約 7 分鐘 ・SR值 464 ・五年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

這篇其實有個上集,也是五個過去一年發表的細菌故事。

Western_corn_rootworm
圖片是長大後的玉米根蟲。來自維基百科

肚子裡細菌的魔法

現在的農業大規模種植同一種作物,讓病原們有了個容易大展身手的舞台。輪作有很多已知的好處,其中一項是讓病菌害蟲失去原本的宿主而沒有辦法建立穩定而龐大的族群,用生物性的方法控制了病害的發生。不過為了生存,這些病菌害蟲也會用盡方法要打破人類的限制來求生存。

這個研究的主角是玉米根蟲(Western corn rootworm, Diabrotica virgifera)。它的幼蟲會啃食玉米的根,當然就影響了玉米的生長。在美國大規模推行的玉米和大豆輪作可以抑制病害的大發生,因為黃豆的組織裡有對抗食的秘密武器. 大豆組織裡含有一種蛋白酵素抑制素( cysteine protease inhibitors)可以讓玉米根蟲沒辦法消化吃下去的蛋白質而無法生存。看起來這方法不錯,但是實行一陳子後還是出現了可以生存下來的玉米根蟲

這篇研究想找出是什麼原因讓玉米根蟲也能在靠大豆裡生活。研究團隊先是發現具抗輪作能力的根蟲有特殊的腸道細菌組成,懷疑細菌跟這能力有關。接著他們用抗生素先除掉根蟲腸道裡原有的細菌,再把它們放在大豆葉子上。結果發現具抗輪作能力的根蟲在少了腸道菌的幫助後,變得無法對抗大豆葉子帶來的毒性。原來生物可以利用腸子裡細菌朋友的幫忙,來找出活下去的新契機,而不一定要慢慢痛苦地等突變了。

研究原文

Chu CC, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11917-22. doi: 10.1073/pnas.1301886110.

 

teeth
圖來自 Humphrey et al. 原研究.

飽暖生蛀牙

蛀牙跟食物有很大的關係。在人類文明裡一直到開始農耕生活,有了充足的富含碳水化合物的食物,才讓口腔裡的細菌有機會使用這些化合物發酵產酸,進而引起蛀牙。哺乳類以吃東西能力好打天下,牙齒隨年紀逐漸磨損,不少哺乳類壽命上限都跟沒有堪用的牙齒有很大的關係。如果針對引起蛀牙的細菌 Streptococcus mutans 的 DNA 序列進行分析,也可以看到它們族群大擴張的黃金時期剛好就在人類進入農耕生活之後。

故事轉到摩洛哥境內的 Grotte des Pigeons 遺址。這個地區在 1995 被聯合國教科文組織(UNESCO)指定為世界遺產,埋藏著過去近兩萬年來的人類歷史。從找到的很多人類遺骸裡可以看出在當時成人的蛀牙狀況非常嚴重,可以高到51.2%,跟現代人有一樣的問題了。奇怪的是,在這時期的人類還以在原野裡採集食物為生,沒有農耕技術。難道過去認定的蛀牙與農耕間的關係是錯的嗎?

研究人員同時也發現當地一萬五千年前的植物化石,證實在當地有不少可食植物,提供包括橡實及松子等高品質食物。雖然當時的人們還是以採集為生,但是食物供應充足,導致牙齒壞光光。過年期間大家也會過著食物充足的日子,請把這篇研究的教訓謹記在心,記得刷牙,不要留給細菌太多好處。

研究原文

Humphrey LT, De Groote I, Morales J, Barton N, Collcutt S, Bronk Ramsey C, Bouzouggar A. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):954-9. doi: 10.1073/pnas.1318176111

 

800px-Colorado_potato_beetle
圖片是長大後的科羅拉多金花蟲。來自維基百科

聲東擊西的金花蟲

植物其實也有免疫系統可以攻擊外來的病原。當植物被咬了一口,組織裡的茉莉酸(jasmonic acid)會上升,啟動植物的免疫系統進行防衛,就像動物受傷了會腫會發炎一樣。一旦免疫系統啟動了,這些啃植物的蟲兒就慘了。

為了要能持續保有好吃的食物,這些蟲兒必須有更厲害的步數。這篇研究發現科羅拉多金花蟲(Colorado potato beetle, Leptinotarsa decemlineata)的幼蟲可以分泌某種東西抑制茉莉酸的出現,以及植物免疫系統的啟動。進一步檢驗後他們發現這種神奇物質可能是分泌物裡的細菌。幼蟲在經過抗生素處理後失去這項能力,追加細菌後又重獲這能力。他們逐一測試分離出來的細菌,發現屬於 StenotrophomonasPseudomonas, Enterobacter 三個屬的細菌真的可以抑制植物植物免疫系統的啟動。細菌到底有什麼魔力可以關掉植物的防守?其實應該這樣說,植物在碰到蟲咬時會啟動茉莉酸為首的防衛機制,碰到微生物進攻時則改用水楊酸(salicyclic acid)開頭的機制應戰。科羅拉多金花蟲很巧妙利用細菌騙過植物,讓植物進入對付微生物攻擊的模式,植物的免疫攻擊就對它不管用囉。

研究原文

Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33. doi: 10.1073/pnas.1308867110.

 

slime

小改變,好友變晚餐!

過年是靜下來回顧這一年來得失的日子。有的人前一秒是友,下一秒成敵,有時這關鍵只因一個小小的轉換,利益總是最大考量。自然界裡原本緊密的共生關係也有這樣因為小事而大翻盤的例子,例如會種細菌來吃的黏菌。

養細菌的變形蟲是怎麼回事?這裡的主角 Dictyostelium discoideum 是一種黏菌(slime mold),它是單細胞的真核生物,平常以變形蟲的長相在環境中生活。當環境變差的時候會展現出它們的社會行為,大家聚在一起變成一個大群體,決定分工,長出子實體(fruiting body)產生孢子來延續族群的生命。過去有一篇在 2011 年的研究指出這種黏菌會在孢子上攜帶自己愛吃的細菌,走到哪種到哪,食物不缺乏,可以被當做是在演化上最早出現的農夫了。

在今天談的這篇研究裡,研究人員從這些黏菌上分離出兩株螢光假單胞菌(Pseudomonas fluorescens) 菌株。雖然都是同一種細菌,但是特性不一樣,就像你能區分台灣人跟白種人間有差別。這兩株細菌的命運大不相同,一個是食物,另一個則是黏菌的好伙伴,能分泌毒素對抗真菌(這毒素叫 pyrrolnitrin),以及分泌一種能促進黏菌產生更多孢子的 chromene 類分子。研究人員很好奇,為什麼它們明明是同一種細菌卻可以出現這麼大的特性差異,導致它們由朋友身份變成食物,於是對它們做了基因體定序,來解讀所有的 DNA 密碼。比對兩株菌的 DNA 後他們很驚訝地發現這一切的改變都源自一個 gacA 基因上的點突變。這個突變導致 gacA 失效,連帶著所有受這個蛋白質調控的基因全部停擺,於是這隻細菌對黏菌不再能提供保護,就被打入食物界當養份了。這個故事告訴我們,新的一年還是要認命地被利用才不會被吃掉(咦?)。

研究原文

Stallforth P, Brock DA, Cantley AM, Tian X, Queller DC, Strassmann JE, Clardy J. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14528-33. doi: 10.1073/pnas.1308199110.

 

NASA 的 DC-8 空中實驗室
NASA 的 DC-8 空中實驗室

在高空中旅行的細菌

搭飛機時你一定有這個經驗:飛機起飛後加足馬力往上衝,先要奮力衝過上下晃動的雲層,才進入舒適平穩的高空,接著期待的餐點才會出現。那段上下晃動的地方就是對流層(troposphere),所有的雲啊霧啊都在那混亂的一層,地面上感受到的晴雨也都看這層的狀況決定。細菌跟這些雲霧也能扯上關係,為什麼?在這樣高度,氣温低,也沒什麼養份,過去不認為這裡會有多少活著的微生物的。 不過這些年的研究發現大氣裡的細菌可能有機會影響天氣,因為連在數千公尺的高空,細菌都被證實可以幫助冰晶形成,幫助凝結水滴來形成雲。

這群研究人員為了研究這些離地面幾公里遠的細菌,跟美國航空與太空總署(NASA)借了架 DC-8 四引擎研究機(這機型是可以載兩百人的大飛機啊),在美國本土,加勒比海和大西洋上空採樣。他們的目標是對流層中上層,分別在颱風前後進行採樣,希望知道颱風對空氣裡微生物組成的影響。研究結果發現空氣裡有相當多的細菌,估計每立方公尺約有 15 萬隻,而且樣本裡的細菌 60%-100% 是活著的。細菌大小約在 0.25-1.00 um左右,佔空氣中這種大小顆粒數的 20%。這些搭順風車的細菌來自何方?經過 DNA 分析後,發現這些細菌來自各種環境,但主要還是來自海洋,這跟颱風是打海洋端生出來的有關。颱風後細菌的數量增加,而且颱風過後空氣裡開始出現來自人類糞便的菌種,顯然颱風捲起了不少下面人類世界的微生物同行。那有沒有那種細菌是適合做這種長途飛行的呢?他們發現普遍出現在所有樣本裡的細菌種類有限,多半能利用含一個碳或兩個碳的有機物,而這些化合物恰好在雲裡都不少,看來細菌要能吃天上的食物才可能在雲端安居。如果天上有這麼多細菌,那以後學大氣科學的人是不是該修一下微生物學,或者也有機會讓我這細菌人坐飛機上去做做大研究啊?這個拿來當做新年新希望來努力夢好了。

研究原文

DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2575-80. doi: 10.1073/pnas.1212089110.

文章難易度
陳俊堯
109 篇文章 ・ 17 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

1
0

文字

分享

0
1
0
蓋房子高手?建築業的未來新星:科氏芽孢桿菌——《細菌群像》
麥田出版_96
・2023/03/12 ・1528字 ・閱讀時間約 3 分鐘

  • Bacillus cohnii   
  • 科氏芽孢桿菌
  • 形狀:圓
  • 直徑:0.6 至 0.7 微米
  • 前進:使用布滿細胞表面的鞭毛
科氏芽孢桿菌。圖/《細菌群像》。

會產生石灰的細菌

細菌不僅可以用於生產食物或提煉金屬,還可以用來建造橋樑和房屋。

例如科氏芽孢桿菌,這是一種一點都不起眼,但會產生石灰的細菌。它喜歡鹼性的生活環境,像是酸鹼值可達八的馬糞裡。但它也生活在鹼性更強的環境,全世界都有其蹤跡,甚至在歐洲、非洲、南美、土耳其的鹼湖裡,它會利用溶在湖裡的碳酸鹽產生石灰。

此細菌最初是在一九九○年代初期,德國微生物及細胞培養保藏中心的細菌學家在尋找偏好鹼性環境的新菌種時所發現,當時的土壤樣本來自一個鹼性土壤的牧場,裡面還殘留著馬糞。

科氏芽孢桿菌除了能夠忍受酸鹼值超過十二的強鹼,相當於氣味刺鼻的氨水的酸鹼值,還能形成孢子渡過長時間的乾旱期。細菌孢子的特性是具有極強的抵抗力,可以存活數十年或數百年,在特定的條件下甚至超過數百萬年(球形離胺酸芽孢桿菌(→ 78頁)還有發芽的能力。

科氏芽孢桿菌的名字源自於德國細菌學家費迪南.尤利烏斯.科恩(Ferdinand Julius Cohn),細菌學的奠基者,也是一八七二年第一個鑑識出芽孢桿菌屬這種小桿形細菌的學者。

研發能「自行修復」的混凝土

科氏芽孢桿菌能生活在鹼性環境中,能產生石灰,孢子經過長時間還具有發芽能力。結合這三種特性,令建築業對之產生興趣。一位荷蘭微生物學家專門研究會產生石灰的細菌,並嘗試研發出一種能自行修復的混凝土。

科學家試圖利用科氏芽孢桿菌研發出能自行修復的混凝土。圖/envatoelements

他的做法是將細菌孢子與銨鹽、磷酸鹽及養分混合在一起,封裝於黏土球裡,然後將這粒只有幾公厘大小的顆粒加入強鹼性的混凝土中。混凝土硬化後若一直保持緊密,便無事發生。但如果出現裂縫,開始長時間滲水,細菌孢子就會開始萌發。當細菌繁殖分裂,會消耗添加進去的物質,並不斷產生碳酸鈣填補裂縫。一道幾公釐寬的裂縫,只需數天時間即可修補完畢。

如此一來,科氏芽孢桿菌就可以解決混凝土結構出現裂縫的難題,否則定期必須進行的繁複維修,造成的損失可高達數十億歐元。除此之外,此細菌也能用在保護現存的建築物,在噴塗混凝土或修復液中皆已測試添加此細菌,用在已出現細微裂縫的建築構件上。

不過,此項產品至今尚未成熟,黏土顆粒仍然占據太多空間,進而影響混凝土的穩定性。還有載體材質、養分及混凝土之間的交互作用,以及孢子平均分布與釋放,與石灰形成的速度及過程等等,都還在改良中。如今,研究人員也測試其他能形成石灰的細菌是否適用。不過無論如何,科氏芽孢桿菌可說是混凝土生物修復劑的先鋒。

科氏芽孢桿菌這類會產生石灰的細菌,現在也運用在其他目的上。一家德國公司利用它來黏走採礦產生的灰塵。方法是將細菌加入培養液裡,灑在布滿灰塵的泥土上,六至四十八小時內就會產生石灰,將灰塵顆粒黏在一起形成砂岩,即固化灰塵。從前為了抑制灰塵,礦業公司必須使用大量的水,如今,藉由細菌的幫忙,就可以省下這些水了。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

1

4
0

文字

分享

1
4
0
高效率生存!生物界的空間利用大師:遍在遠洋桿菌——《細菌群像》
麥田出版_96
・2023/03/11 ・1874字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • Candidatus Pelagibacter ubique 
  • 遍在遠洋桿菌
  • 外觀:通常如月牙般略彎之小桿 
  • 長:0.37 至 0.89 微米 寬: 0.12 微米至 0.20 微米
遍在遠洋桿菌。圖/《細菌群像》。

高效率利用生存空間

假使將我們肚裡大腸桿菌的體型比作兔子,遍在遠洋桿菌的體型就如同小老鼠。這種無所不在的海洋細菌不只是能獨立生存的細菌中體積最小的[1],可能也是全世界最有效率也最成功的生物。每公升的海水裡,就有數以百萬計這種細菌,據推測,遠洋桿菌屬的總菌量在地球上高達 1027 至 1028,這個數目是宇宙中目前可觀測到之恆星數量的十萬至一百萬倍。

但這種細菌所創下的紀錄不只這項: 海水所含養分非常貧乏,微生物要生存,就必須主動將所需養分分子輸送進細胞內部。這會消耗能量,最後也一定會有所剩餘。遍在遠洋桿菌則生活在極限邊緣:擁有正好足夠其吸收養分及生長繁殖所需的能量,剛剛好,不多也不少。

遍在遠洋桿菌可說是生物界的空間利用大師,其用來維持新陳代謝和繁殖的胞內空間,少到令人難以想像。細胞內三分之二的空間用於新陳代謝,剩下的三分之一被遺傳物質占滿。在小小的空間裡備有感應系統,能偵測含碳、氫、鐵化合物及光線的位置,擁有必要的運輸系統,以及一切所需的酵素,能自行生產二十種維持生命不可或缺的胺基酸。

體積若是再小,就只能放棄全部或部分的新陳代謝。例如,更小的病毒基本上就是壓縮緊密的基因,會侵入其他生物的細胞中,將別人的新陳代謝系統據為己用。

如果養分充足,細胞內無須再具備持家基因,生活在這種環境的細菌或古菌的確可以小過遍在遠洋桿菌。例如生殖道黴漿菌(Mycoplasma genitalium),這是一種對人類致病的病原體,會在尿道、子宮等黏膜造成感染,體積僅有三百乘以六百奈米左右,但無法獨立生存[2]。二○一五年有學者聲稱在地下水裡發現更小的細菌,但直至今日為止尚未能成功培養,因此學界相當懷疑是否真實存在。

精簡而高效的演化結果

此外,遍在遠洋桿菌的維生機制,效率也出奇地高。它只有一百三十萬組鹼基對,共含約一千四百個基因,是至今已知可獨立生存的物種中最少的。沒有任何多餘的東西,只有必要的配置。甚至連遺傳密碼,也似乎為了減少能量消耗而有過最佳化的調整。

一如其他生物,遠洋桿菌的遺傳密碼由四種鹼基 A(腺嘌呤)、C(胞嘧啶)、G(鳥嘌呤)、T(胸腺嘧啶)所組成。但比起其他細菌,遠洋桿菌裡 A 與 T 出現較為頻繁,此點便是出於效能,因為 C 與 G 含有較多的氮(而這在海水中是稀有元素),製造起來較為困難,如同人們以盡可能節省墨水的方式寫作一樣。

遍在遠洋桿菌在其所屬的立克次體目裡,算是特異獨行的一支。因為除了它之外,所有立克次體目的細菌,都必須在其他生物細胞內才能存活,其中也有不少病原菌,例如普氏立克次體菌,流行性斑疹傷寒的病原菌,透過蝨子傳染。

生物學家研究遍在遠洋桿菌並不只因為其驚人的能源效能和基因體的構造,對生態而言,它也相當重要。因為所有遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多,且占有海洋細菌生物量的四分之一;在溫暖的夏季,甚至可能高達二分之一。由於它的主要食物來自死亡生物殘留下來的可溶性有機物,因此在地球的碳循環上,也扮演一個重要的角色。

遍在遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多。圖/envatoelements。

由於數量實在太龐大,因此也容易引起敵人的覬覦:至今已知有數種病毒,會侵占並消滅此種細菌。

遲至二○○二年,人們才知道遍在遠洋桿菌的存在。在那之前,人們只認得它的 rRNA(核糖體核糖核酸)序列,是一九九○年研究人員在北大西洋馬尾藻海的海水樣本裡所發現。這也是首批運用當時最新的序列鑑定方法檢測到的細菌之一,但當時無法成功地培養出來。最後研究人員用了養分很低的培養基,以及高度稀釋的樣本,並添加一種能附著在核糖體上的染劑用以判別才成功。

註解

  • [1] 審定注:一些寄生型細菌和古菌更小。
  • [2] 審定注:該菌倚賴人類細胞裡的現成養分存活。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

所有討論 1
麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

0

2
1

文字

分享

0
2
1
征服極端低溫!具有超強耐寒能力的細菌:冷紅科爾韋氏菌——《細菌群像》
麥田出版_96
・2023/03/10 ・1718字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • Colwellia psychrerythraea 
  • 冷紅科爾韋氏菌
  • 形狀:小桿狀
  • 顏色:淺紅色
  • 長:2.5 至 3.5 微米
  • 直徑:0.5 微米
  • 前進:使用鞭毛
冷紅科爾韋氏菌。圖/《細菌群像》。

攝氏 –196 度的世界

據當今研究結果所知,在生命出現的早期,地球上炎熱期與冰凍期交互出現,前者平均溫度可達攝氏五十度,後者溫度可低至地表完全凍結。火山爆發及隕石和小行星的撞擊,使地球溫度升高,經由化學反應及後來出現的生物反應消耗大氣層中的二氧化碳,又使地表變冷凍結。

對大多數的生物來說,今日地球是個既濕又冷的家。地表面積超過百分之七十全是海洋,其中三分之二又是寒冷的深海帶,終年溫度只有攝氏二至三度。地表上所有水域裡,淡水僅占百分之二點五,溫度卻也沒有太大差別:百分之九十的淡水,都儲存在極地冰塊及散布地球各處的冰河裡。

自人類開始定時測量並記錄溫度後,最低溫的紀錄是在南極測得的攝氏零下八十九點二度,不過那裡的溫度也從未上升到比結冰點還高。比較重要的是,有些地方雖有溫暖期,但在夜間或冬天會變得異常寒冷,像亞洲一些地方最高溫可達攝氏四十九度,但低溫時也會降到零下五十度。因此不難想像,為何這麼多的細菌都具有高溫差環境的適應力。

所有在低溫環境仍然活躍的細菌中,冷紅科爾韋氏菌特別引人注目:這種微生物在攝氏零下十度還可四處遊走,在攝氏零下二十度還能繼續生長分裂繁殖。甚至在攝氏零下一百九十六度超低溫環境,研究人員還可觀察到其新陳代謝的運作。

冷紅科爾韋氏菌能在液態氮(這可是能將花朵瞬間凍成易碎玻璃的物質)中將胺基酸吸收並用來組成自己的細胞。此特性要歸功於它的保暖聚合物及在細胞外作用的酵素,讓它被包覆在網狀的分子結構裡,就像穿了一件毛衣,保護其免於水分形成整齊的冰晶結構。耐寒細菌的細胞壁結構類似液晶,在極冷和高壓下仍然可以保持液態,這也解釋了為何它同時也耐高壓。

掌握低溫生物技術

科爾韋氏菌屬發現於一九八八年,發表研究結果的作者建議以美國微生物學家麗塔.科爾韋(Rita Colwell)之名來命名,以示敬意。科爾韋生於一九三四年,在一九六○年代發現沿海水域有霍亂弧菌,而且常寄生在以藻類為食的浮游性橈腳類[1]動物上。

在氣候溫暖或養分過剩導致藻類大量繁殖時,就會吸引這些細小的甲殼類動物前來,細菌也就隨之而來。科爾韋發現這項事實後,立即成立安全用水供應網,設法以盡可能簡單的工具,例如自造的過濾器,防止因飲用水造成的傳播感染。

此後,她還與其他伙伴一起創立 CosmosID 公司,以期快速檢驗出環境樣本中的細菌。為了向她致敬,南極一座山塊[2]就以她的名字命名。冷紅科爾韋氏菌的種小名 psychrerythraea,則由希臘文 psychros(冷)及拉丁文 erythraeus(紅色)組成,因這個細菌嗜寒並含有紅色色素。

科爾韋氏菌被應用於許多生物技術上。圖/envatoelements

冷紅科爾韋氏菌也可以在無氧的環境中存活,還可利用各種結構簡單或結構複雜的有機化合物做為養分。由於這種細菌能分解很多種含氮化合物,甚至還能利用硫來產能,因此相當適合利用它在寒冷地區處理環境污染問題。

除此之外,此種細菌也可能促進新疫苗的發明。科學家將病原菌重要的代謝基因替換成冷紅科爾韋氏菌的代謝基因,得到以下結果:病原菌在低溫下正常生長,但在常溫時停止生長,細胞逐漸死亡。這種弱化後的病原菌可用在活體疫苗,使身體在不受危害的狀況下產生足夠的免疫力。此法已在動物實驗中證實可行。

註解

  • [1] Copepoda,橈腳類或譯橈足類,海洋中數量眾多的一群甲殼動物。
  • [2] massif,又稱地塊,地質學中的一個結構單元,比構造板塊要小。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 13 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。