0

0
0

文字

分享

0
0
0

螞蟻也懂折射定律?!

活躍星系核_96
・2014/01/18 ・1419字 ・閱讀時間約 2 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

文/陳其威(印尼泗水台灣國際學校物理老師)

最近有研究指出,螞蟻在不同的表面行徑時,也遵行著折射定律,也就是說,螞蟻所走的距離,並不是最短距離,而是最省時的路線。研究人員收集了以色列小火蟻的巢穴,一個巢穴約有幾千隻的工蟻與幾隻的蟻后,並將螞蟻們放在牆邊的角落,而食物源放在另一個對角的角落,為了到達食物的角落,必須穿過由不同材料所覆蓋的區域,不同的材料影響了螞蟻步行的平均速率:粗糙的聚酯氈(1.73毫米/秒),光滑聚酯氈(2.97毫米/秒),和聚乙烯玻璃(4.89毫米/秒)。

研究人員預測的角度的限制,螞蟻會跨越從一個表面到另一個表面,他們將選擇最快的路徑。按照至少一次費馬原理,該角度可以被認為是折射角,類似於光的折射,是以特定的角度在不同介質傳播。就如同救生員必須找到最佳路徑,以到達一個溺水的游泳者以最快的方式,而不是最短距離。

-----廣告,請繼續往下閱讀-----
螞蟻巢穴與食物源的示意圖
螞蟻巢穴與食物源的示意圖

生活中我們不難發現光的折射現象,例如插在水中的吸管似乎被折斷了、下過雨後的彩虹、太陽光射入玻璃後成彩色光線,都是因為光在不同的介質中,傳遞的速度不同,而造成光偏折的現象,我們稱之為光的折射。

fig.1
太陽光射入玻璃後形成彩色的光線

而光的偏折並不是任意的偏折,它所行徑的路線會遵守折射定律圖片1θ1,θ2表示入射角與折射角,n1, n2分別表示入射介質與折射介質的折射率),又稱司乃耳定律,而滿足這樣的路徑的光線,可以使光從P點到Q點行經的”時間”最短,而不是距離最短。

光在不同介質傳遞時,產生折射的現象
光在不同介質傳遞時,產生折射的現象

 

可以利用數學的費馬原理證明,由P點到Q點所行經的時間T圖片2

當時間Tx取導數,若T為極小值,則導數值為零,圖片3

-----廣告,請繼續往下閱讀-----

圖片5 , 圖片6,因此可化簡成圖片7

再用折射率的定義圖片8 ,即可得到司乃耳定律圖片9

螞蟻在不同介面,所走的路徑並非直線,而是最短時間的路徑
螞蟻在不同介面,所走的路徑並非直線,而是最短時間的路徑

研究人員還指出,螞蟻也喜歡依邊框的邊緣行進(在現實生活中,例如,螞蟻往往沿著人行道的邊緣行走),這可能便於螞蟻定位地標,也意味著所需要信息較少,研究人員未來希望能夠學習更多的新領域。

【參考資料與延伸閱讀】

-----廣告,請繼續往下閱讀-----
  1. Ants follow Fermat’s principle of least time
  2. Fermat’s Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders
  3. Fermat’s principle
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

4
0

文字

分享

0
4
0
露兜樹象鼻蟲的身世之考察——分類學家偵探事件簿(四)
蕭昀_96
・2023/12/25 ・3950字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

一般大眾或甚至其他領域生物學家們,對於基礎生物分類學家的刻板印象,無非是常常在顯微鏡下進行形態解剖比較來鑑定物種、描述並發表新物種,或者常常東跑西跑去採集標本,頂多是抽取遺傳物質進行 DNA 分析。然而一位稱職的分類學家,為了搞清楚物種學名的分類地位,將整個命名系統修訂成一個穩定並適合大家使用的狀態,往往需要做大量的歷史文獻,造訪各大博物館並進行模式標本考察,其中的繁瑣和複雜程度,往往令人出乎意料。

再讓我們複習一次模式標本是什麼和其重要性?

如果有閱覽過這系列的文章便會很清楚的知道,模式標本是物種發表時的實體存證,是學者對分類地位有疑慮時,用以判別的客觀證據。每個物種都有其模式標本,而每個屬也有其模式物種,是判定該屬別的決定性物種,模式種和模式標本是進行物種與屬別層級的基礎分類研究時,不可或缺的重要資訊。

這個故事的主角是一類來自南亞和東南亞的露兜樹象鼻蟲,本文將講述其模式標本和背後歷史脈絡的考察,以及我們對於分類處理過程的案例分享。

分布於南亞、東南亞的露兜樹象鼻蟲和研究緣起

露兜樹科(Pandanus)為分布於東半球的亞熱帶及熱帶地區的灌木或喬木植物,其中林投(Pandanus tectorius)具有抗風、耐鹽的特性,是常見的海岸防風定砂植物,而俗稱斑蘭葉(pandan)的七葉蘭(Pandanus amaryllifolius),則是東南亞常見的料理與糕點製作材料,而南亞和東南亞的露兜樹上棲息著一群黑色扁平的小型象鼻蟲——露兜樹象鼻蟲(Lyterius)。

-----廣告,請繼續往下閱讀-----
露兜樹是東半球的亞熱帶及熱帶地區的灌木或喬木植物。(攝/B.navez from Wikipedia)
小小扁扁的露兜樹象鼻蟲(Lyterius)是與露兜樹有伴生關係的特別物種。(圖/論文原文)

而故事的緣起可追溯到 2022 年,當時筆者正在澳洲進行博士論文題目「澳洲蘇鐵授粉象鼻蟲的多樣性與演化」的研究,我們意外地發現澳洲的蘇鐵授粉象鼻蟲與東南亞產的露兜樹象鼻蟲親緣關係接近,因此我們便想進一步探究本類群的分類。在我們初步搜索模式標本時,我們驚奇地發現德國象鼻蟲學者延斯・普雷納博士 Dr. Jens Prena 似乎曾經有研究過這類象鼻蟲,出於好奇,我們聯繫了普雷納博士,進而開啟了本類群錯綜複雜的分類歷史考察之旅。

露兜樹象鼻蟲分類研究的現存問題

首先露兜樹象鼻蟲的分類問題分成兩個面向,一個是屬別層級的,而另一個是物種層級的。屬別層級的問題比較簡單,我們發現露兜樹象鼻蟲屬有三個相關的屬別,分別為 Lyterius Schönherr, 1844、Barisoma Motschulsky, 1863 和 Plaxes Pascoe, 1885,根據牠們形態的相似性和地理分布的重疊,我們認為牠們應該被合併成單一屬別,也就是說只要我們確認三個屬別的模式種都是屬於同一個屬別後,那自然我們就能依照優先權原則,把 1863 年發表的 Barisoma 和 1885 年發表的 Plaxes 處理為最早發表的 Lyterius 的同物異名。

但是!分類學研究最困難的就是這個但是!

我們雖然追蹤到 Barisoma Plaxes 的模式種和其模式標本,但是 Lyterius 的模式種問題,卻將這個研究的難度拉向了另一個層面——也就是物種層級的問題。

模式標本來源和流向超級複雜的 Lyterius

Lyterius 這個屬別是由瑞典昆蟲學家卡爾・約翰・舍恩赫爾(Carl Johan Schönherr)於 1844 年所提出,並以 Rhynchaenus musculus Fabricius, 1802,這個 1802 年由丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius )所發表的種類作為模式物種。他的合作對象瑞典昆蟲學家卡爾・亨利克・博赫曼(Carl Henrik Boheman)也在同一本書中使用了 Lyterius musculus (Fabricius, 1802) 這個學名組合,同時他將德國昆蟲學家弗里德里希・韋伯(Friedrich Weber)在 1802 年所描述的 Curculio abdominalis Weber, 1801 也拉進這個屬別,學名組合變成 Lyterius abdominalis (Weber, 1801) ,並且描述一個菲律賓的新物種 Lyterius instabilis Boheman in Schönherr, 1844 。這其中最為複雜難解的,便是 Lyterius musculus (Fabricius, 1802) 和 Lyterius abdominalis (Weber, 1801) 之間的關係了,因為這兩個物種的模式標本來源,都源自於達戈貝爾特・達爾多夫 Dagobert Karl von Daldorff 這位在俄羅斯出生,擁有德裔血統的丹麥博物學家,在 18 世紀末葉任職丹麥東印度公司時,於 1795 年在蘇門答臘的一次採集。

-----廣告,請繼續往下閱讀-----
除了我們常常聽到的荷蘭、英國東印度公司,丹麥也曾經創立了東印度公司。(攝/Wikipedia)

根據我們對於 19 世紀初期的歐洲甲蟲分類歷史文獻的爬梳,達爾多夫在蘇門答臘的標本被帶回歐洲後,應該至少被他贈與或交換給五位學者或機構,而這五位學者就包含剛剛提到的德國昆蟲學家弗里德里希・韋伯(Friedrich Weber),以及丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius),這兩位顯然同時對這批標本進行分類學研究。

令人存疑的 Lyterius abdominalisLyterius musculus

因此第一個疑點就是,韋伯和法布里丘斯分別在 1801 年和 1802 年用達爾多夫所採集的同一批蘇門答臘象鼻蟲標本,發表了後來在 1844 年被博赫曼放在同一個屬別的物種 Lyterius abdominalisLyterius musculus,這讓人很難不懷疑,這兩個名字會不會根本就是同一個物種,這在當年資訊不流通、分類研究還很粗淺的年代,是非常容易發生的事情。

而支持這樣想法的關鍵則有二,首先德國昆蟲學家約翰・卡爾・威廉・伊利格(Johann Karl Wilhelm Illiger)其實在 1805 年的著作中,就已經提出這兩個物種是同一個物種的論點了,然而這項分類處理卻被博赫曼在 1844 年的著作中,不明地忽略了。雖然博赫曼不小心遺漏了伊利格的分類處理,他卻也在看過兩種的模式標本後,在他那 1844 年的著作中,提出了兩個物種只不過是同一個物種的雄蟲和雌蟲的猜想,然而因為他手邊就只有兩隻標本,一隻是雄的 Lyterius abdominalis ,一隻是雌的 Lyterius musculus ,因此他無法下這個決定情有可原,而我們如今已經知道露兜樹象鼻蟲有很明顯的雌雄二形性,雄蟲的口喙比較短,且足部的前腳腿節有明顯的突起,博赫曼的猜想不證自明。

總而言之,從上述的歷史文獻爬梳,我們可以從

-----廣告,請繼續往下閱讀-----
  1. 韋伯和法布里丘斯研究的都是同一批蘇門答臘採集的標本
  2. 同時代的伊利格和後來的博赫曼都直接或間接的認為 Lyterius abdominalisLyterius musculus 是同一個物種

來推斷,這兩個種類很有可能是同一個種類!

瑞典昆蟲學家卡爾・亨利克・博赫曼。(攝/Wikipedia)

找不到模式標本啊!

在爬梳大量文獻後,我們同時也造訪歐陸各大標本蒐藏去尋找這些物種的模式標本下落。我們很幸運的在德國基爾的動物學博物館找到兩隻 Lyterius musculus 的總/群模式標本。然而,在尋找 Lyterius abdominalis 模式標本的過程中卻碰了壁,不管是文獻還是實際探訪,幾乎都找不到韋伯收藏的下落,韋伯所發表的模式標本有極大的可能已經遺失了,那要怎麼辦呢?

分類學家的決策

雖然沒辦法找到 Lyterius abdominalis 的模式標本,然而我們從以上的間接證據,可以合理相信 Lyterius abdominalisLyterius musculus 就是同一個物種。為了最適當的處理分類議題,穩定整個分類命名系統。我們使用了一個技術性的分類學處理,首先我們指定了 Lyterius musculus 的選模式標本,並且我們將「這一個」標本,再次的指定為 Lyterius abdominalis 的新模式標本,這個時候,這兩個學名便產生了動物命名法規上所謂的「客觀同物異名(objective synonym)」關係,相較於分類學家自行主觀認定的同物異名(主觀同物異名 subjective synonym ),客觀同物異名指的是用同一個標本發表不同學名的狀況,這樣這兩個名字無庸置疑的是同物異名關係,只有最早被發表的名字有優先權,因此我們的 Lyterius abdominalis (Weber, 1801) 獲得了優先被使用的地位,也成為露兜樹象鼻蟲屬的模式種。經由這一波操作,我們確立了 Lyterius 的模式和包含的物種,也因此我們終於能進一步處理剛剛提到的 BarisomaPlaxes 的同物異名,最後我們可以大聲的說:露兜樹象鼻蟲屬的學名是 Lyterius Schönherr, 1844 !

番外篇的 Plaxes 模式標本調查

另外一方面,我們在調查 Plaxes 的模式標本時,也發現到其模式種 Plaxes impar Pascoe, 1885 的總/群模式標本散落在英國倫敦自然史博物館、德國柏林自然史博物館、德國德勒斯登森肯堡博物館、義大利熱拿亞自然史博物館、澳洲國立昆蟲館,幾乎涵蓋了半個地球。這些標本可以分為來自婆羅洲砂拉越和蘇門答臘的標本,採自砂拉越的標本無疑是一個獨立的物種,我們也指定砂拉越的總/群模式標本為本種選模式標本。而來自蘇門答臘的標本,無獨有偶地都和 Lyterius abdominalis 是同一個物種,顯然這個物種在蘇門答臘當地是個常見的物種,這又再次加強我們上面提到的,達爾多夫所採集的同一批蘇門答臘象鼻蟲標本應該就只有一種露兜樹象鼻蟲的推測。

-----廣告,請繼續往下閱讀-----

這個研究重新梳理了露兜樹象鼻蟲的分類歷史並考察了歷史文獻和模式標本,最終作出了適宜的分類學處理,為亞洲地區的象鼻蟲研究推進了一步。

  • 本論文日前已經線上刊載於《動物分類群 Zootaxa 》
  • 此文響應 PanSci 「自己的研究自己分享」,以增進眾人對基礎科學研究的了解。

參考資料

  • Prena, J., Hsiao, Y., Oberprieler, R.G. (2023) New combinations and synonymies in the weevil genus Lyterius Schönherr (Coleoptera, Curculionidae), with a conspectus of historical works on Daldorff’s Sumatran beetles. Zootaxa 5380(1): 26-36. https://doi.org/10.11646/zootaxa.5380.1.2
-----廣告,請繼續往下閱讀-----
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

10
3

文字

分享

0
10
3
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

0

1
1

文字

分享

0
1
1
《世紀帝國II:決定版》之蟻群爭霸?!
胡中行_96
・2023/10/12 ・3293字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

風靡全球的電玩系列《世紀帝國》(Age of Empires),問世將近 26 年,歷經多次新作發表與改版。[1]終於,有生物學家發現它的附加價值,妥善利用於學術研究:2023 年 8 月澳洲聯邦科學暨工業研究院(CSIRO)跟西澳大學(University of Western Australia)隆重巨獻,於美國《國家科學院院刊》(PNAS)正式發表[2, 3]──《世紀帝國II:決定版》(Age of Empires II: Definitive Edition)之蟻群爭霸!

當然,微軟 Xbox 沒有業配贊助,論文標題也不長這樣,而且研究設計浪費了遊戲豐富的功能,玩法單調純樸。[1, 2]不過,成果依然獲得 YouTube 電玩頻道的專業評析,與網友的熱烈討論。[4]

CSIRO 釋出的《世紀帝國 II:決定版》戰爭畫面。圖/參考資料 3(© CSIRO;Fair Use

遊戲模擬

《世紀帝國II:決定版》的場景編輯器,允許玩家在地圖上,改變環境特徵,並配置人力與建物。遊戲裡軍民單位的行為,由32,000行的程式所控制:在「if… then…」的語法下,如果某單位滿足特定條件,便會引發對應的行為。與此研究有關的部份,規範敵軍進入反應半徑時,軍事單位必須向前移動並發動攻擊,但是對於友軍或中立者則一概忽略。其中精銳條頓騎士(Elite Teutonic Knight)的反應半徑為3個格子;而雙手劍兵(Two-Handed Swordsman)則是 4 個。[2]利用這樣的設計,便可以激發戰爭。

研究團隊選擇「標準」的遊戲難度,先讓精銳條頓騎士跟雙手劍兵單挑,直到一方陣亡,總共 10 次。如此確定前者的強悍名不虛傳,無往不利。接著每次出 1 名精銳條頓騎士,跟 2、3、4…8 名雙手劍兵對打,即至1:4 的時候,都還是精銳條頓騎士勝出。最後,研究團隊做了下列設定:[2]

-----廣告,請繼續往下閱讀-----
  • 藍軍:玩家控制;紅軍的敵人;擁有最高生命值和最強攻擊力的精銳條頓騎士,共 9 名。[2]
  • 紅軍:電腦控制;藍軍的敵人;以 20、30、40…100 名戰力薄弱的雙手劍兵,組成數個步兵團。[2]
  • 綠軍:電腦控制;藍、紅兩軍分別的友軍。[2]
  • 簡單競技場:以城牆圍出一塊不會遭藍軍或紅軍攻擊,形狀為長方形的綠軍地盤,讓藍、紅兩軍於其中捉對廝殺。[2]
  • 複雜競技場:先圈出一個簡單競技場,然後用步兵單位無法跨越的水域,在裏頭隔出3條巷道。每條都有3名藍軍的精銳條頓騎士駐守,與巷道外紅軍的雙手劍兵團對峙。[2]

在玩家完全不操作的狀況下,藍軍與不同人數的紅軍,於簡單和複雜競技場交戰。每種排列組合打 10 場,總共 180 場戰役。每場都要打到有一方被完全殲滅,才算結束。簡而言之,就是以不同的人數和場地,不斷重演一模一樣的情境。[2]「大概是遊戲最無聊的玩法」,論文的第一作者 Samuel Lymbery 博士抱怨。[5]整體來說,當紅軍人數增加到一個程度,藍軍的勝算便開始下降,而場地差異則會影響達到此變化的門檻。[2]

藍、紅兩軍在簡單競技場中對戰。影/參考資料 3(© CSIRO;Fair Use

螞蟻實戰

2021年 7 到 10 月間,研究團隊去西澳伯斯丘(Perth Hills)地區的小鎮Chidlow,找澳洲肉蟻(Australian meat ants;學名Iridomyrmex purpureus[註]),還有外來的阿根廷蟻(Argentine ants;Linepithema humile)。從兩者分別的 6 個聚落抓工蟻,數量恰為實驗所需,且不會危害蟻群續存。帶回實驗室後,將來自同個蟻窩的關在一起,用水、蜂蜜和死蟋蟀飼養。[2]

澳洲肉蟻與阿根廷蟻的工蟻,先一對一「釘孤枝」(tìng-koo-ki[6]),直到其中一方死亡為止。凡是有打起來的場次,一律由澳洲肉蟻獲勝。接下來,研究團隊以類似電玩版的模式,調整蟻群的大小與所處的環境,讓兩軍對戰。[2]

  • 澳洲肉蟻:每場戰役徵召20隻。[2]
  • 阿根廷蟻:每次發派 5、10、20、60、100、150 或 200 隻。[2]
  • 簡單競技場:10 公升裝的塑膠容器。[2]
  • 複雜競技場:在塑膠容器裡,用木板區隔出數條巷道。[2]

各種排列組合,照原計劃是要打 7 次,排除有技術性問題的幾次,最後總共進行了 93 場戰役。這裡與遊戲模擬的差別,在於限制時間長度為 24 個鐘頭,結束後統計雙方死傷,而非等到單方全軍覆沒。不意外地,澳洲肉蟻總是勝利,然而傷亡數量卻隨情況而異。[2]

-----廣告,請繼續往下閱讀-----
巨大的澳洲肉蟻;弱小的阿根廷蟻。圖/參考資料 3(© Bruce Webber CSIRO;Fair Use

人類與螞蟻

螞蟻之類的社會性昆蟲打起來,規模與人類的傳統戰爭雷同。[3, 5]澳洲肉蟻對上阿根廷蟻,就像精銳條頓騎士之於雙手劍兵。無論是實戰或電玩,少數強者跟眾多弱者戰鬥時,強者於複雜競技場的死亡率較低,而在簡單競技場則較高。所以戰爭的結果,「取決於戰場的特性」,Samuel Lymbery博士表示。[3]

侵略性的外來螞蟻,會攻擊本土動物,並破壞農作物。[5]阿根廷蟻雖然體型渺小,卻在人為環境或受人類影響的棲地大量繁殖,[2, 3]而且是最猖獗的外來種之一,每年造成全球 1 千 9 百萬美金的經濟損失[2]這是因為人類整頓地面時,移除了植物和自然碎屑,於是創造出簡單競技場般,空曠、開放的戰鬥場域。[3]對真實世界的螞蟻來說,簡單競技場就是人行道和公園;而複雜競技場為樹叢或木屑等。[5]總之,原本自然環境中,具有體型優勢、擅長單挑的澳洲肉蟻,在人為的干擾下,變得容易死於敵軍圍毆。[3]人類務必把複雜的結構加回去,才能減少外來者造成的物種失衡。[3, 5]

YouTube電玩頻道推薦

澳洲這篇論文在美國《國家科學院院刊》上線後,擁有 36.9 萬追蹤者的 YouTube 電玩頻道 Spirit of the Law,發表了一支 12 分鐘,深入淺出的影片,摘要研究重點,還提到其中運用的蘭徹斯特法則(Lanchester’s laws)。不到1個月,已有將近 30 萬人次觀賞。[4]影片下方留言區的科學家與資深玩家,不僅熱議這個描述第一次世界大戰前的戰爭型態中,戰力、人數與戰爭結果關係的數學模型,也執著於論文不影響結論的計算錯誤。[2, 4]發覺迴響熱烈的 CSIRO,感謝 Spirit of the Law 之餘,更將影片節錄到自己的頻道上推廣。[7]

CSIRO 節錄 YouTube 頻道 Spirit of the Law,對此研究的介紹。影/參考資料 7
YouTube 電玩頻道 Spirit of the Law 介紹用《世紀帝國》模擬螞蟻行為的研究。影/參考資料 4

備註

研究團隊把 Iridomyrmex purpureus,叫作澳洲肉蟻(Australian meat ant)。[2]這種螞蟻的學名,有多個中文翻譯。臺灣大學昆蟲系名譽教授吳文哲導讀,彰化師範大學生物學系教授林宗岐審訂的《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》,稱其為紫虹琉璃蟻[8]

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Age of Empires. (26 OCT 2022) ‘Age of Empires – A Franchise History’. YouTube.
  2. Lymbery SJ, Webber BL, Didham RK. (2023) ‘Complex battlefields favor strong soldiers over large armies in social animal warfare’. Proceedings of the National Academy of Sciences of the United States of America, 12;120(37):e2217973120.
  3. Dewar I. (29 AUG 2023) ‘Ant wars: How native species can win the battle over invasive pests’. CSIRO, Australia.
  4. Spirit of the Law. (13 SEP 2023) ‘How AoE2 is helping scientists understand ants’. YouTube.
  5. Hughes M. (03 OCT 2023) ‘Scientists use Age of Empires computer game to simulate ant warfare’. ABC News, Australia.
  6. 釘孤枝」教育部臺灣閩南語常用詞辭典(Accessed on 06 OCT 2023)
  7. CSIRO. (24 SEP 2023) ‘Testing ant warefare models in Age of Empires II #ageofempires’. YouTube.
  8. Wilson EO, Hölldobler B.(05 SEP 2019)《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》貓頭鷹出版社
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。