0

0
0

文字

分享

0
0
0

混沌的地底:遠方強震與人為誘發的交互作用

李柏昱
・2013/10/02 ・1711字 ・閱讀時間約 3 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

美國的天然氣開發商透過水力壓裂等方式開採天然氣,但這些注入地底的水可能會造成人為地震的增加。(圖片來源:Wikimedia common作者The Pinedale Field office of the BLM)
美國的天然氣開發商透過水力壓裂等方式開採天然氣,但這些注入地底的水可能會造成人為地震的增加。(圖片來源:Wikimedia common作者The Pinedale Field office of the BLM)

2013年8月31日,中國四川與雲南交界發生芮氏規模5.9地震,今年同時也是台灣921地震14周年,但是你知道嗎,除了要擔心自然板塊運動所引發的地震,我們也要關注一下隨著石油開採、抽取地下水或興建水庫,或許也會意外讓大地變得更容易晃動!

一般地震的成因是斷層兩旁的岩盤發生相對位移而釋出巨大的能量,隨著科技進步,人類開始有能力影響地底下的斷層狀態,例如改變斷層面的摩擦力或是改變斷層的壓力,從而誘發人為地震產生。對於此種人為誘發地震的憂慮近年來在美國逐漸攀升,尤其最近地震出現在出乎意料的地區時。

1967年到2000年間,美國中部以及東部平均每年經歷21次芮氏規模3以上的地震。但在2010年到2012年的短短3年,同一地區卻發生300多次規模3以上的地震。在阿肯色州、科羅拉多州、俄亥俄州以及德州有越來越多的地震似乎與天然氣與石油開採有關。由於天然氣與石油不易流過不透水層(impermeable shale),所以石油公司透過水力壓裂(Hydraulic fracturing)的方式打穿岩層,透過用大量摻入化學物質的水灌入頁岩層進行液壓碎裂以釋放天然氣與石油。壓裂岩層本身不會導致地震,但是這些加壓用的液體卻可能對附近斷層施加壓力,導致人為地震。

其實,科學家在數十年前便已經知道把液體注入地底可能誘發地震,但是在絕大多數情況中卻沒發生,更重要的是,先前科學家無法預測人為誘發的地震會在何時以及何處發生。2013年7月12日,地震學家發表一份報告,指出遠處大規模地震釋放出的地震波,可能會引起半個地球外的鑽探井附近小規模震動,這種小地震可能是斷層即將錯動的危險預告。

-----廣告,請繼續往下閱讀-----

「當我們觀測到因為遠處強震造成的小地震,這似乎是更大規模的人為誘發地震的前兆,這代表這裡的斷層已經逼近臨界點。」科學家說。「每當我們改變地底的液體分布狀態,我們就將斷層更進一步推往發生錯動的邊緣。」

回顧自2003年至2013年的地震資料,2010年智利規模8.8地震、2011年東日本規模9.1大地震、2012年蘇門答臘規模8.6地震,都引發位於奧克拉荷馬州、德州與科羅拉多州的3座鑽探井附近小規模震動,而在遠方強震後6〜20個月內,三個鑽探井附近分別發生了規模4.3至5.7的地震。

來自遠方強震的地震波可能擾動了斷層面上的液體,導致壓力增加。如果天然氣開採業者能夠辨認何時斷層會發生錯動,他們便能夠調整注入地層中的液體量甚至停止。但是由於只有極少數的地方會因為遠方地震產生小震動,要運用這種方法預測的實用性仍有很大的限制。

在美國境內有數以千計的鑽探井,然而並不是每個井都會誘發地震,目前科學家還不清楚為什麼有些井會導致地震,而大多數的則不會。此外,並不是每個發生人為誘發地震的井都有預兆,尤其當處理井非常靠近斷層時,只需要幾個月的時間液體量便足以誘發斷層滑動。在這種情況下,要利用發生頻率較低的遠方強震預測這些人為地震相當困難。不過即便有這些限制,這份研究仍然幫助科學家更加了解誘發地震的自然機制。

-----廣告,請繼續往下閱讀-----

雖然在多數情況下,人為誘發的地震並沒有導致太多損失,但是將液體打入地底不過是近幾十年的事,要判斷這些井導致的地震風險,以及鑽鑿這些井的經濟效益與風險相較是否值得還言之過早。目前這些井僅分布於偏遠的德州西部地區,一些地表的小小震動並不會干擾到任何人,但是當開採業者逐漸在靠近人口密集的地區鑽井,例如達拉斯附近時,或許人們就要重新思考它們所帶來的地震風險了。(本文由國科會補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威|元智大學資訊社會研究所

本文原發表於行政院國家科學委員會科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3701字 ・閱讀時間約 7 分鐘

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

為了不讓每一年的夏天都是你我餘生最涼的夏天,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
2

文字

分享

0
2
2
地震前兆研究的另一條路:慢地震
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/19 ・1906字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/何其恩

大家印象中的地震是什麼樣子呢?是災難電影中,地震來了就是天搖地動、山崩地裂?還是曾經在新聞上看到路面裂開、房屋損壞?

其實地震可以根據不同區域、產生原因等分成許多種類。像是火山地震、隕石地震、冰川地震⋯⋯等。如果我們用物理特性來分類,可以把地震分為快地震及慢地震。

什麼是慢地震訊號?

一個斷層存在著接近脆性變形(可以想像這時地層像餅乾一樣,受到壓力會破碎)的孕震區,當應力累積到極限時,就會發生破裂產生地震;隨著溫度及壓力改變,會慢慢接近韌性變形(這時地層比較像黏土,受到壓力不會破碎,而是直接變形,難以累積應力)的穩定滑移區。

-----廣告,請繼續往下閱讀-----

當然也存在介於兩個性質之間的區域,就是慢地震常發生的地方,累積應力到一定程度時破裂,但又緩慢回彈,形成維持時間長但瞬時能量不大的一種地震,稱為「慢地震」。

在 21 世紀前,地球科學家們就有共識,斷層依照破裂方式可大約分成兩個種類:一種是會被鎖定一段時間,發生錯動產生地震的黏滑斷層(stick-slip faults);另一種則是持續穩定滑移的潛移斷層。

慢地震的發現,讓我們了解並驗證斷層的錯動方式,有介於上述兩者之間的模式,可以像黏滑斷層一樣累積應力,錯動的方式卻類似潛移斷層。

慢地震的發現

慢地震分成非常多種,像是長微震(Tremor)、低頻事件(LFT)、超低頻事件(VLF)、慢滑移事件(SSE)⋯⋯等。有些名字很早就被拿去火山地區使用,因為岩漿等流體造成的震動,也會有長微震、低頻事件出現。2002 年,日本學者首次發現非火山區的板塊交界帶出現了長微震,臺灣則是在 2008 年開始出現相關研究。現在學界會特別區分這些微震是屬於火山區(volcanic )還是非火山區(non-volcanic)。

-----廣告,請繼續往下閱讀-----

臺灣的慢地震:中央山脈南段底下的長微震

在臺灣,非火山長微震主要位於中央山脈南段下方的地震空區。那裡有高 Vp/Vs 值、高地熱梯度、低電阻⋯⋯等特性,說明了在隱沒過程中,脫水產生的流體在此富集。往北方經歷更多碰撞作用時,應力在深部呈現局部集中,孔隙壓劇烈變化產生了長微震訊號。

臺灣發現的長微震比其他國家的更短、更微弱。根據文章的描述,2007 年至 2012 年中在臺灣搜尋到的長微震,最長僅約半小時左右。

此外,臺灣的慢地震有明顯的年週期性:長微震數量多時,氣壓較低、潮位較高、降水量較低,地下水位也較低。這跟我們說明了,地下水位變化帶來的應力擾動和潮汐力一樣重要,其綜合效應可能有效加速慢地震的活動性。

開啟地震前兆研究的另一條路

為什麼近年來慢地震開始受到地震前兆研究關注呢?因為研究發現,這些微震對應力的變化非常敏感,甚至潮汐力的改變都有可能影響長微震的發生率。那是不是有個可能,地震發生前的應力改變,也會反映到長微震身上呢?

-----廣告,請繼續往下閱讀-----

一篇 2017 年發表在《美國地球物理研究期刊》的論文,就以 2010 年甲仙地震(規模 6.4)為目標,研究團隊分析地震發生前的長微震發生率。結果顯示在甲仙地震發生的 2 個月前以及 3 週前都看到長微震發生率的顯著變化!另一方面,研究團隊也比較了 GPS 地表位移場的資料,同樣發現在這兩個時間點出現了異常變化。

除了主震之外,團隊還研究了比較大的餘震。同樣在 2011 年 1 月一場規模 4.2 的餘震也看到類似的異常現象。不過,並不是所有餘震都能觀察到,像是 2010 年 7 月規模 5.7 的餘震就沒有觀察到任何異常變化。研究團隊表示,可能是主震造成長微震的影響還在,所以沒辦法觀測到顯著的變化。

這也說明了,利用長微震異常作為地震預測的手段還是存在許多限制。但這份研究的確為地震前兆開啟新的可能,觀察到顯著的關聯並提出可能的物理機制,為地震前兆研究注入一股新的力量!

延伸閱讀

  • Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata, Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, vol335, 705 (2012)
  • Chao, K., Z. Peng, Y.-J. Hsu, K. Obara, C. Wu, K.-E. Ching, S. van der Lee, H.-C. Pu, P.-L. Leu, and A. Wech (2017), Temporal Variation of Tectonic Tremor Activity in Southern Taiwan Around the 2010 ML6.4 Jiashian Earthquake, J. Geophys. Res. Solid Earth, 122, 5417-5434, DOI:10.1002/2016JB013925.
  • 慢地震 Slow Earthquake https://academic-accelerator.com/encyclopedia/zh/slow-earthquake#google_vignette
  • Yoshihiro Ito, Ryota Hino, Motoyuki Kido, Hiromi Fujimoto, Yukihito Osada, Daisuke Inazu, Yusaku Ohta, Takeshi Iinuma, Mako Ohzono, Satoshi Miura, Masaaki Mishina, Kensuke Suzuki, Takeshi Tsuji, Juichiro Ashi,
    Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake,
    Tectonophysics, Volume 600, 2013, Pages 14-26, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2012.08.022
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
大直公寓陷落!連續壁能保護工地,為什麼會造成外側房屋坍塌?在軟弱地盤上蓋房子可行嗎?
PanSci_96
・2023/10/21 ・5106字 ・閱讀時間約 10 分鐘

「趕快下來、房子要倒了!」隨著工地主任一聲大喊,居民慌亂逃出。接著,基泰大直建案隔壁的公寓,就像坐電梯一樣往下陷落,原本的 1 樓,如今已成為地下室。

除了基泰大直案,台灣各處都偶有聽聞發生天坑、房屋沉陷等事件,這些災害,似乎又常常是地下工程惹的禍。

但這次事件是怎麼發生的?軟弱的地盤真的不適合蓋房子嗎?我家或你家,也會遇到嗎?

為什麼土壤會崩塌?

為什麼土壤會崩塌?大家應該都有過在海邊堆沙子的經驗,當砂子堆到一定的角度後,沙堆表面的沙子就會開始不穩定,這時如果繼續堆沙,沙子就會坍方。

土壤的「剪力強度」會使土壤坍塌到一定程度後就不會繼續坍塌,讓土壤的斜面與地面形成一個角度。所謂的剪力是指將物體推往相反方向的外力,例如用剪刀剪紙,或是用手撕紙。而土壤的剪力強度,指的是防止土壤發生平移破壞的阻抗,剪力強度愈大,代表愈不容易發生坍塌。

剪力強度的大小則受到土壤的顆粒形狀、大小分配比例、緊密程度以及凝聚力所影響。例如由不同形狀與大小的顆粒混雜而成的土壤,彼此之間的摩擦力比只有相同大小顆粒的圓形土壤,強度還要高。或是含水量較少的黏土,比含水量高的黏土黏滯性還高,凝聚力更強,因此剪力強度比較高,更不容易坍塌。

圖/公共工程品管班教材

若是開挖基地的土壤剪力強度不足,很難形成垂直度高的壁面,這個時候若是沒有足夠的空間設立明挖邊坡,就需要擋土壁來擋住側向的砂土,保護開挖面,讓工程順利進行。

-----廣告,請繼續往下閱讀-----

大家在這次事件一直聽到的「連續壁」,是一種常見的地下擋土設施,就可以擋住側向的沙土。開挖建築地下室前,常會在基地周圍施作一圈連續壁,阻擋地下水與土壤,再進行開挖工作。由於連續壁適用範圍廣、可以擋水、所需空間不大,對臨房影響較小,常被用在軟弱黏土以及都市密集區的工程。而連續壁的貫入深度,通常是開挖深度的 2~3 倍。

以台北市為例,根據臺北市建築工程基礎開挖安全措施管理作業要點,在有鄰房的狀況下進行地下開挖,深度只要達 8 公尺以上就要採用連續壁擋土工法。這些連續壁不僅能用來保護工地,還可以成為未來完工後,建築物地下室的永久外牆。

開挖建築地下室前,常會在基地周圍施作一圈連續壁。圖/PanSci YouTube

那麼,這次事件又發生了什麼事呢?

大直民宅坍塌事件是怎麼發生的?

為了抵擋側向土壓力與水壓力,通常擋土壁還需要配合基地內的支撐系統。常見的施工流程首先會在施作擋土壁之後打入中間柱,並且開挖第一階土方。接著在中間柱上架設一層臨時性的水平支撐與施工構台,才會繼續往下開挖下一階土方,重複這樣的步驟直到挖至設計深度。全部開挖完成後,最後在底面鋪設混凝土底版,由下往上開始施作地下室結構。

-----廣告,請繼續往下閱讀-----
圖/公共工程品管班教材

這次基泰大直事件中,基地位於軟弱黏土地盤。當開挖作業進行到一定深度後,連續壁外側的土壤重量,超過連續壁底部黏土的抵抗力,開挖底部失去平衡。外部的黏土沿著破壞面流動,湧入開挖區。緊接著,基地內的土壤連同中間柱被湧入的土壤向上抬起。當中間柱被向上推之後,橫向的水平支撐也隨之崩解,失去保護連續壁的作用,最後失去側向支撐力的連續壁朝基地內擠進破壞。

災難如連鎖反應,除了基地結構被破壞,基地外側的土壤也會因為向開挖區內流動,導致地面大量沉陷,蓋在上面的房子,也就是這次事件中受害的民宅,隨之下陷。這種工程災害稱為「隆起破壞」。

過程雖然是這樣,但導致這次事故發生的確切原因,目前還在調查當中。可能是調查與設計單位對地質狀況的判斷過於樂觀,連續壁的設計貫入深度不足,或是因施工不慎,導致連續壁與支撐系統並沒有完全發揮作用。

那麼你可能最擔心的是,我家會不會也遇到相同問題,買房前是不是也要挑地質?

-----廣告,請繼續往下閱讀-----

常見的開挖災害有哪些?

這邊要先說明,其實不同的地質,需要對應不同的考量與施工工法,我們應該因材施工。而不同地質,也會面臨不同的挑戰與風險。例如基泰大直的隆起破壞,容易發生在軟弱黏土進行的開挖工程,而在透水性良好的砂質土壤中,則可能會因為地下水位差,發生管湧與砂湧等災害。

什麼是管湧呢?它指的是地下擋土壁因為施工不慎導致壁面出現裂縫,在裂縫處將容易形成透水路徑。如果沒有即時修補裂縫,滲出的水流會愈來愈大,並夾帶砂土,形成滲流管道。水流夾帶砂土持續湧入開挖基地,就會使得擋土壁外側逐漸被掏空,導致上方鄰近道路及房屋沈陷。

圖/臺灣公路工程第 43 卷第 1-2 期

而砂湧,也是另一個容易發生在砂質地盤的災害,這種現象主要發生在基礎開挖時,基地內側與外側水位落差很大。水位差會使地下水由擋土壁底端上湧,當上湧水流的壓力大於開挖面底部土壤的重量,水壓會將基地內的土砂舉起,冒出開挖面,進而導致開挖基地的破壞。

圖/臺灣公路工程第 43 卷第 1-2 期

不過除了先天的地質問題,擋土壁與支撐系統,也可能會因為設計與施工上有所疏失,使得擋土壁牆身的強度不夠或位移太大而發生破壞。

-----廣告,請繼續往下閱讀-----

話說回來,這些軟弱地盤,是不是根本就不適合蓋房,爛泥扶不上牆,不對,是爛泥扶不住牆呢?

軟弱地盤真的不適合蓋房嗎?

就像蛋糕不是只有蛋,建築的地盤不只有土壤,而是由土壤、地下水及空氣所組成。依照不同的比例及成份,有著不同的特性。若是地質沒辦法讓蓋在上面的建築物穩定安全,就是所謂的軟弱地盤。

軟弱地盤通常位於沖積平原、湖沼地或是人工回填區。這些地方的土壤因為沒有經過地質變動等物理作用,通常由軟弱黏土、沉泥、或是鬆散的砂土所構成。例如台北盆地是河流所形成的沖積平原,因此大部分的地區都是屬於軟弱地盤,而桃園、台中的地質則穩固許多。

直接在軟弱地盤上蓋房子,就像將建築蓋在豆腐上,不僅施工時容易發生災害,建築也可能會因為自身的重量而沉陷。但隨著都市發展,所需要的土地大量增加,我們很難完全避免在這類地盤上興建工程,因此工程師會利用各種方法,來克服困難的地質條件。

-----廣告,請繼續往下閱讀-----

軟弱地盤並不是完全沒有辦法蓋房子,我們可以選擇深基礎,透過數十公尺長的基樁,穿過軟弱土層,將建築固定在更深處的堅硬岩盤上。

或是透過地盤改良,改善土壤的特性,防止破壞、液化以及沉陷等問題發生。

除了加入岩隱村習得土遁忍術以外,地盤改良的方式非常多,同樣需要依據地盤的性質、改良的方向以及工程的類型來選擇最適合的工法。這裡介紹幾種台灣常見的地改方式。

第一種是振動夯實,這種方法是利用機械振動等外力,使基地土層的密度增加,加強支撐力,減少發生沉陷或液化的可能,這種方法適用在非黏性的土層。

-----廣告,請繼續往下閱讀-----

第二種,排水預壓工法。這種方式則是在蓋房子前,在基地加上額外的載重,同時也可以搭配排水帶,縮短土壤孔隙水的排水路徑,讓水更容易排出,進而增加土壤的壓密速率,減少土壤內的孔隙與含水量,克服未來建築完成後的沉陷問題。

第三種,也是在都市建築中最常見的地盤改良,是深層攪拌工法,利用特殊機械,透過高壓噴射或是機械攪拌等方式,在地層中注入水泥,並同時攪拌土壤,讓水泥與周圍的土壤拌合成固結體,與原本的地層組成複合基地,以提高土壤強度,我們常聽到的地盤改良樁,就是屬於這種工法。

也就是說,透過合適的地盤改良、基礎形式與開挖工法,軟弱地盤也是能蓋房子的。

如果你對你家,或是你想要買房子地方的地質很好奇,那事不宜遲……就來介紹查詢看看你家地質吧。

-----廣告,請繼續往下閱讀-----

我該怎麼知道我家的地質?

依照經濟部地質法的規定,只要是政府機關或公營事業所辦理的地質調查,都需要將調查結果提交給中央主管機關。而這些資料都會被上傳至中央地調所建置的公開平台——工程地質探勘資料庫,也就是說,如果你家附近曾經有公共工程進行過地質調查,就可以在上面找到鑽探資料。

另外,政府也公布了全台的地質分佈資料土壤液化潛勢區以及活動斷層的分佈,資料都公開在網路上,有興趣的觀眾可以上去查看,更瞭解自己的居住環境。除此之外,國家地震研究中心甚至有有簡單的試算方式,可以評估自家住宅的耐震能力。

當然這些公開資料,只能作為工程設計的初步參考,還是需要請專業的地質調查公司進行鑽探與實驗,才能比較完整地瞭解基地的地質。因為即便知道自己家裡附近的地質類型,地質條件還牽涉到各種土壤參數,工程設計和施工品質也有重大的影響。此外,像順向坡角、土石流及易淹水潛勢區這類危害很大的地方,一般民眾原本也鮮少將此列入尋覓住處的考量。

如果有哪些關於買房要注意的眉角你還想聽我們分析,例如房價、交通、裝潢、空氣品質甚至是風水,歡迎留言告訴我們。最後也想問問大家,在挑房子時,哪項指標是你最在意的呢?

  1. 事件發生後,我覺得地質與買房地點,才是最重要的
  2. 在多地震的台灣,房屋的耐震係數最重要
  3. 氣候變遷之下,節能省冷氣且防淹水防空污最重要
  4. 以上這些都是多說的啦,房子貴到買不起,對我都不重要。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----