2

3
2

文字

分享

2
3
2

家用電器的電磁輻射有多強,WHO告訴你

果殼網_96
・2013/09/14 ・3766字 ・閱讀時間約 7 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

credit: CC by Thomas Rockstar@flickr
credit: CC by Thomas Rockstar@flickr

從電動刮鬍刀到電腦,高壓電塔到手機基地台,我們生活中充滿了各種會產生電磁場的設備與儀器。他們產生的電磁場有多強?距離多少又是安全的呢?請看世界衛生組織的介紹。

家居中的電器

輸電和配電設備產生的背景電磁場強度

電力需要使用高電壓的電力傳輸線傳輸很遠的距離。變壓器可以將高電壓轉換為低電壓,用於本地居民和商業機構的電力分配。電力傳輸、分配設備、家用電線及電器是家中背景磁場的主要來源。在遠離電力線的住戶中,背景電磁場強度可以達到0.2 µT。直接在高壓線的下方,電磁場的強度還會更大,地面的磁通量密度可以達到幾µT。在電力線下方的電場強度則高達10 kV/m。然而,電場和磁場強度會隨著與電力線的距離增加而銳減。在50米到100米的距離,電磁場的強度通常會和遠離高壓輸電線的區域的強度差不多。此外,相比於房屋外面同樣地點測到的值,房屋的牆壁可以明顯降低電場強度。

家居中的電器

-----廣告,請繼續往下閱讀-----

通常最強的電場都是出現在高壓輸電線下方。相對來說,通常最強的磁場通常很靠近電器,以及某些特殊的設備-像影像醫學使用的核磁共振儀。

距離家用電器較近時典型的電場強度值(距離30釐米)來自德國輻射安全聯邦辦公室,1999年

電器 電場強度(V/m)
立體聲收音機 180
電熨斗 120
冰箱 120
攪拌器 100
烤面包機 80
吹風機 80
彩色電視 60
咖啡機 60
吸塵器 50
電爐 8
電燈泡 5
目前標準限值 5000

在不同距離,很多人看到各種家用電器周圍的磁場強度值時,應該會感到很驚訝。磁場強度的大小與設備的大小、複雜程度、用電多少、和產生噪聲多少都沒有必然聯繫。不僅如此,就算表面上相似的設備之間,磁場的強度會非常的不同。比方說,一些吹風機的周圍會有非常強的磁場,其他吹風機可能就幾乎不會產生任何磁場。磁場強度的不同與產品的設計有關,下面這張表格顯示了一些家居和工作場所常見的電器的典型數值。測量是在德國進行的,所有的這些電器都是工作在50Hz的交流電下。值得注意的是,實際的暴露值會隨著產品的品牌型號和使用距離變化很大。

電器 3釐米距離(µT) 30釐米距離(µT) 1米距離(µT)
吹風機 6 – 2000 0.01 – 7 0.01 – 0.03
電動剃鬚刀 15 – 1500 0.08 – 9 0.01 – 0.03
吸塵器 200 – 800 2 – 20 0.13 – 2
日光燈 40 – 400 0.5 – 2 0.02 – 0.25
微波爐 73 – 200 4 – 8 0.25 – 0.6
攜帶式收音機 16 – 56 1 <0.01
電爐 1 – 50 0.15 – 0.5 0.01 – 0.04
洗衣機 0.8 – 50 0.15 – 3 0.01 – 0.15
電熨斗 8 – 30 0.12 – 0.3 0.01 – 0.03
洗碗機 3.5 – 20 0.6 – 3 0.07 – 0.3
電腦 0.5 – 30 < 0.01
冰箱 0.5 – 1.7 0.01 – 0.25 <0.01
彩色電視 2.5 – 50 0.04 – 2 0.01 – 0.15

大多數家用電器在距離30公分的磁場強度,都在安全標準的限值100µT以下,正常的使用距離用粗體標示。(來源:德國輻射安全聯邦辦公室,1999年)

-----廣告,請繼續往下閱讀-----

這張表格主要說明了兩點:第一,各種電器周圍的磁場強度都會隨著你遠離它們而驟減。第二,大多數的家用電器不會在非常靠近身體的時候工作,在大多數家用電器周圍30公分的距離,比安全標準上限100µT(50Hz)(60Hz是83µT)低100倍以上。

電視機和電腦屏幕

電腦螢幕和電視的原理類似。都會產生靜電場和不同頻率的交流電磁場。

一些筆記型電腦和桌上型電腦使用的LCD螢幕沒有增加電場和磁場的強度。現代電腦配備的導電電腦螢幕,可以將螢幕產生的靜電磁場強度降低到正常的背景電磁場範圍。在正常使用的距離(距離螢幕30公分到50公分),交流磁場的磁通量密度通常小於0.7µT,正常使用距離的交流電場強度範圍從1 V/m以下到10 V/m不等。

-----廣告,請繼續往下閱讀-----

微波爐

家用微波爐會以很高的功率工作。但是有效的遮蔽使得微波爐外的電磁場降到無法偵測到的強度。不僅如此,放射出的微波隨著與微波爐距離增加而驟減。很多國家都規定生產微波爐在運作時放出的電磁場強度最大值,符合生產標準的微波爐不會對用戶造成任何危害。

無線電話

相較於手機,無線電話工作產生的電磁場強度小很多。這是因為它們只在距離家中機座天線非常近的距離內使用,不需要很強的電磁場來遠距離發送信號。所以這些設備周圍的電磁場大小可以忽略不計。

-----廣告,請繼續往下閱讀-----

環境中的電磁場

雷達

雷達會發射出微波訊號脈衝,用於導航、天氣預報、軍事和其他很多的應用。儘管平均功率可能比較低,脈衝中的最大功率可以很高。很多雷達會旋轉和上下移動,也就降低了雷達附近的居民暴露在電磁場下的平均功率密度。

保全系統

商店或圖書館的防盜標籤,會被出口的通電線圈探測到;當商品被購買或者書籍被借閱,標籤就會被去掉或者消磁。線圈產生的電磁場一般不會超過安全標準。訪客管制系統中,具有磁性的鑰匙圈或識別證也是以類似的方式運作。金屬探測器和機場安檢系統會產生強度高達100 µT的強磁場,距離探測器很近的時候,磁場強度會接近甚至偶爾超過安全準則限值,但短期的暴露並不會影響健康。

-----廣告,請繼續往下閱讀-----

列車和電車

長途列車會有一個或者多個與旅客車廂分開的發動機車廂,因此乘客暴露的電磁場主要來源於列車的供電系統。長途列車乘客車廂的磁場強度在接近地面的時候可以達到幾百µT,在車廂內其他位置會有偏低的值,大約幾十µT,電場強度可以達到300 V/m。居住在鐵路沿線的居民會遇到上方供電線產生的磁場,強度不同國家有所不同,一般會與高壓電線的磁場強度相當。

一些列車和電車的發動機位於乘客車廂地面的下方,在發動機正上方最近的車廂地面區域,磁場強度可以達到幾十µT。強度會隨著與車廂地面的距離增大迅速減小,乘客身體上部暴露的強度已經大大降低。

電視和收音機

-----廣告,請繼續往下閱讀-----

當你在選擇收音機收聽的電台時,是否想過熟悉的縮寫AM和FM代表著什麼?收音機信號因為訊號傳播方式不同,分為調幅(AM)和調頻(FM)兩種;調幅廣播用來遠距離傳播信號,調頻廣播覆蓋較侷限的區域,但是會提供更好的聲音質量。

調幅廣播由很大的天線陣列來發送信號,可以達到幾十米高,發射場所禁止民眾進入。在天線和電纜附近的暴露強度很高,但是這只會對工程人員有影響,並不會影響一般居民。

電視和調頻廣播天線比調幅廣播天線小很多,以陣列的形式安裝在高塔的頂部。塔的本身只作為支撐結構。在塔底附近的暴露強度在安全標準限值內,民眾可以進出電波塔附近的區域。不過偶爾小型的本地電視和廣播天線會安裝在建築的頂部,是這樣就有必要限制人員進出屋頂。

手機和手機基站

-----廣告,請繼續往下閱讀-----

手機這種低功率的發射裝置,需要和定置的低功率基地台所組成的網絡之間傳遞訊號。每個基地台訊號對局部的區域覆蓋,按照需要處理的通話數量,在城市裡相隔幾百公尺建置,而在農村地區則可以相隔幾公里。

基地台通常安裝在建築頂部,或者在15到50公尺高的塔上。從某個基地台向外放出的信號強度並不固定,會隨著通話的次數和通話者距離基站的距離改變。天線會發出很窄的一束電波,沿著幾乎與地面平行的方向散開,所以地面及民眾可以進入的區域,電磁場強度遠低於危險值,只有在接近天線正前方1到2公尺的距離時,才有可能被超過安全標準。在手機普及之前,民眾接觸的電波輻射主要來自於廣播和電視發射台。就算是今天,由於民眾可以進出的區域中,基地台訊號強度通常遠低於廣播、電視發射台區域中的強度,手機基地台幾乎沒有增加我們電磁波暴露的總量。

但是,手機用戶暴露的電磁場強度比環境中的高出很多。手機使用時距離頭部很近,所以相對於全身,使用者頭部吸收的能量的分佈必須被檢驗。目前藉由模擬測量的相關研究,頭部接收的能量沒有超過安全標準。

暴露在手機頻率電磁場中還有其他經常被討論的隱憂,包括會對人體細胞的致癌風險,或者干擾神經細胞,進而影響大腦和神經系統的功能。然而,綜合目前既有的證據來看,並不認為使用手機會因為電磁波而影響人體健康。

生活中的磁場真的那麼強嗎?

近年來,很多國家的政府部門都有監測居住環境中的電磁場強度,卻沒有一項資料顯示測量到的電磁場強度會對健康帶來負面影響。

德國政府最近測量了2,000名不同的職業的民眾,每日電磁場暴露的情況。所有受測者24小時都戴著測量器,測量的結果各不相同,但是平均每天的暴露量是0.10 µT,遠低於民眾暴露標準上限100 µT、職業的暴露限值500 µT。不僅如此,城市中心區與農村地區的居民,接收到的電磁波沒有明顯不同;居住在高壓電線附近的居民的暴露量和其他居民的暴露量差異也很小。

總結:

  1. 家庭中背景電磁場主要來自於電力傳輸、分配設備以及家用電器。
  2. 不同電器產生的電磁場強度會明顯不同,電場和磁場的強度都會隨著與電器距離的增大而驟減。在各種情況下,家用電器周圍的電磁場強度遠遠小於安全準則的限值。
  3. 在電視機和電腦螢幕正常的使用距離,電場和磁場強度只有安全標準值的萬分之一到千分之一。
  4. 符合標準的微波爐不會對健康造成威脅。
  5. 只要公眾不近距離接近雷達設施、廣播天線和手機基地台,就不會接收到超過安全標準強度的發射電磁場。
  6. 手機的發射電磁場強度比日常居住環境中的其他電器都高出很多,但即使這樣,也沒有達傷害健康的強度。
  7. 很多調查顯示,日常居住環境中的電磁場強度非常小。

本文編譯自世界衛生組織英文網站About electromagnetic fields

關於這個流言的更多討論,請見流言百科條目《連續三次使用電吹風的輻射累積量等於照一次X光》。

轉載自果殼網

文章難易度
所有討論 2
果殼網_96
108 篇文章 ・ 8 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
已經不能沒有「它」?悄悄改變我們生活的「家庭科技」
賴昭正_96
・2024/01/12 ・4027字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

——Carl Sagan(1934-1966)美國天文學家、科普作家

在「日常生活範式的轉變:從紙筆到 AI」一文裡,筆者談到 50 年來的科技發展完全改變了我們自己日常生活的方式,如筆者已經不再用紙筆寫文章、不在圖書館裡找資料、旅行不需要攜帶地圖、在家逛街購物、買股票不需要透過券商下單、與親友及科學月刊通訊都是瞬間達成、⋯⋯等等。最近人工智能的正式登場更可能讓人人成為寫文章高手,讓讀者懷疑這篇文章是不是筆者自己寫的。

除了這些有形的日常生活方式的改變外,事實上還有一些無形、沒有改變我們生活方式的科技正在我們家中發生的。其中最明顯的就是電視, 我們看電視的方法還是一樣, 但年輕的讀者可能不知道不管從軟體或硬體來看, 電視機已經完全不再是 1970 年代的電視機了。我們在這裡就來談談這些偷偷摸摸進入我們家庭生活的三大無形改變吧,免得被名科幻小說及科普作家薩根(Carl Sagan)嘲笑:我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

電視機

早期的電視機是由真空管及陰極射線管(CRT)組成的,體積膨大。1940 年代,半導體器件的發明使得生產固態電子器件成為可能,它比熱真空管更小、更高效、更可靠、更耐用、更安全、更涼爽、更經濟。從 1960 年代中期開始,熱電子管可以說完全被晶體管取代。然而直到 21 世紀初,陰極射線管(也是一種真空管)仍然是電視監視器和示波器的基礎。

圖/作者提供

1982 年,愛普生(Seiko Epson)發布了第一台用液晶(liquid crystal)當平面顯示器(display)的液晶電視(LCD TV);1984 年,愛普生又發布了第一台全彩袖珍液晶電視。夏普(Sharp)於 1988 年推出第一台商用液晶電視;第一台電漿(plasma)電視於 1997 年出現。電漿電視畫面是透過顯示器上面畫素(Pixel)點發光,不是像液晶電視機在畫面後面照光,因此在畫質方面比液晶顯示器強多了,但因在價格上沒辦法競爭,早已被淘汰掉了,最近被類似的有機發光二極體(organic light emitting diode, LED)電視機取代。

-----廣告,請繼續往下閱讀-----

除了硬體外,電視影像訊息的傳播編碼(coding)也大異於前:早期使用類比訊號(analog signal)編碼,現在則使用數字(digital)。後者在其開發時就立即被認為是自 1950 年代彩色電視出現以來,電視技術上之一項創新進步的重大變革。類比廣播到數字廣播的轉變始於 2000 年左右;經過多次及多年的拖延,美國終於於 2009 年 6 月 12 日正式取消無線類比電視廣播,台灣也已於 2012 年 7 月全面廢除無線類比電視廣播,改用數位電視。詳情請參見高畫質數位電視

電燈泡

我們一般都將發明燈泡的功勞歸於愛迪生(Thomas Edison),事實上早在他 1879 年申請專利之前,英國發明家就已經知道用弧光燈當燈泡。但愛迪生不但將白熾燈泡商業化,並發明了將電力帶入住家所需的整個系統——發電機、電線、保險絲、燈的開關。1904 年出現了取代碳絲燈泡之更亮的新型鎢絲燈泡,1913 年發現在燈泡內放入氮氣等惰性氣體可以提高壽命,沿用至今。 

電燈照明的原理是因為任何溫度不為絕對零度的物體,總是不停地對外放出各種頻率的輻射能(見「科學家如何找到黑體輻射光譜,引發 20 世紀初的量子革命?」)。不幸的是:這些不同頻率的輻射能中只有非常少的一部分是可見光,因此利用鎢絲加熱來照明的電燈效率非常低(見「電燈的效率」)。

筆者在「太陽能與光電效應」裡探討了「二極體」(diode)的物理,其用途甚廣(如整流器及控制器等)。它可以透過光來發電製造太陽面板;它也可以透過電來發光——「發光二極體」(light emitting diode, LED)——製造上面提到之有機發光二極體電視機及二極體燈泡。因我們可以用不同材料來控制發出來之輻射在可見光範圍,所以二極體燈泡效率比傳統鎢絲燈泡高得非常多:例如前者只需 18 瓦特就可達到後者 100 瓦特(W)的亮度。加上它不使用高溫,壽命也因之比較長;但因其製造成本高,所以直到最近美國才宣布禁售傳統鎢絲燈泡,強迫使用二極體燈泡1

-----廣告,請繼續往下閱讀-----
圖/作者提供

發光二極體需要在直流電下運作,一般家用二極體燈泡設計在低電壓 1.2-3.6V 之間。然而,為了變壓方便及減少輸送過程中的能量浪費(見「高壓危險」),全世界電力公司都用高電壓的交流電輸送電力,到住宅區附近的變電所後再減壓到 120-240V,因此二極體燈泡的設計非常不同於傳統燈泡:它的首要任務是將高電壓交流電降壓整流為低壓的直流電。除此之外,因固態線路特性,它也必須考慮電壓及電流的穩定、散熱等問題,因此在設計上比鎢絲燈泡複雜多了,成本也貴得多。

家庭電話

與電視機及燈泡相比,家庭電話可以說是改變最少的;事實上自從行動電話普及後,許多家庭已不再使用固定的家用電話,改變了我們日常生活的方式。但仍有不少像筆者一樣頑固的長者保留家用電話的,他們將發現:雖然現在的電話機比以前的加了很多功能,如來電顯示、留言、無線分機等,但其基本結構還是保留在 1962 年世界博覽會上首次以商品名「按鍵音(Touch-Tone)」推出的按鈕撥號(也就是說 1970 年代的電話現在還是可以用的,也還可以在市面上買到)。

圖/giphy

傳統電話系統通話依賴於兩個節點間的直接物理連接,在通話中這條線是不能斷的。為了覆蓋廣泛的地區,任何兩點間都直接連線當然是不可能的,因此出現了稱為「電路交換」(circuit switching)的呼叫切換技術。早期的呼叫切換是由電話接線員來完成的,但隨著電話覆蓋範圍的擴大,美國電話及電報公司(AT&T)開始推出機械交換系統,人們可以從家裡手動撥打其它號碼,不再需要人工操作員接通。到 1978 年左右,完全自動化終於消滅了電話接線員這一職業。

圖/作者提供

自從互聯網(Internet)及一種可用寬頻連線進行語音通話的互聯網協定語音(voice over internet protocol, VoIP)出現後,網路語音(VoIP)電話開始慢慢侵食傳統的家庭電話。不像電視機及燈泡,事實上傳統的家庭固定電話是有其優點,如不受斷電及不穩定網路的影響等,但因網路語音電話成本較低及較高彈性,美國聯邦通訊委員早在 2022 年 8 月就宣布不再要求美國電信公司提供銅線固定電話服務,因此相信傳統的電話系統不久將在美國消失了2

-----廣告,請繼續往下閱讀-----

電路交換技術的一大缺點是:兩點一旦連接在一起,別人便不能再使用那整條電路3,浪費了有限的資源。現在網路語音電話的交換網絡依賴於「分組交換」(packet switching)技術。分組交換概念是波蘭裔美國工程師巴蘭(Paul Baran)於 1960 年代初提出,首先使用於美國國防部的阿帕網(ARPANET)。使用者透過網路傳送檔案時,先將檔案分割為較小的數位「資料包」(packet)形式來進行傳輸。每個資料包都有一個包括來源位址、目標位址、資料包數量和序號等的資料包頭,因此它們可以各走其獨立路線(網路節點負責指揮交通),發送者和接收者之間沒有必要(也從未)直接連接在一起,可以充分且更有效率地利用傳輸媒體。數位資料包到達目的地後,經組合再透過數據機(modem)將數位數據轉回電話線的類比訊號,傳到傳統的電話上。

以前傳統電話因為要用實體電線接到區域交換總機,所以可以從區域號碼知道這支電話的所在地;網路語音電話只要連接到任何一個網路節點就可以,所以家用電話號碼可以隨搬家移動到別的區域(例如台北的 02 區域電話號碼可以在阿里山出現),因此區域號碼已經失去其區域的意義。

結論

這些悄悄來的家庭科技中,改變最多的是電視:在軟體(數位訊號傳輸)及硬體方面(平面顯示器)都完全擺脫了舊科技,以全新的面貌在家庭中出現;接觸過舊電視的讀者,應該不難發現影像的改進不可同日而語。燈泡則只改變硬體(二極體燈泡),網路語音電話只改變軟體(分組交換訊號傳輸)。

筆者雖然喜歡新科技,但因一則較貴,再則可能不穩定,而不願做新技術的天竺鼠(實驗對象),對新技術的接受總是很遲的;即使如此,筆者的家庭也已經全面「現代化」了。但是內人除了發現電視機不同及燈泡比以前更接近太陽光4外,根本不知道老公花了多少心血將狗窩現代化。

-----廣告,請繼續往下閱讀-----

註解

  1. 事實上美國早在 2007 年就頒布白熾燈泡禁令,但被川普政府撤銷,該規則於今年(2023 年)8 月 1 日才又生效。台灣經濟部宣佈 2011 年底全面禁售白熾燈,五年內全面更換成二極體燈泡。
  2. 但在台灣還不流行。根據名市場研究公司 Future Market Insights 分析:全球住宅網路語音服務市場規模預計將從 2023 年的 221 億美元增至 2033 年的 678 億美元;在預測期內(2023 年至 2033 年),全球住宅網路語音服務需求預計將以 11.9% 的複合年增長率增長。
  3. 只要電話不掛斷(如找資料暫停通話),電路就不會、也不能斷;因此原則上如果夠多人在同時用電話,將會將所有的電路線都佔罄了。
  4. 太陽表面的溫度約在 6000°C,鎢絲燈泡大都在 3000°C 左右操作以增加壽命。

延伸閱讀

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 50 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!