0

0
0

文字

分享

0
0
0

屁能被點著嗎?

科學松鼠會_96
・2013/08/30 ・2276字 ・閱讀時間約 4 分鐘 ・SR值 522 ・七年級

34文/

一個人一天要放屁8到20次,而人的屁中含有一些可燃氣體,例如氫氣和甲烷,那麼屁到底可不可以被點燃呢?

一張gif圖片在網上流傳,圖片上顯示個女生用打火機引燃了另一位女生的臀部,明亮的藍色的火焰在這位女士的牛仔褲上蔓延。有註解稱,這證明了屁是可燃的。

這是真的嗎?學生物用過酒精燈,並不幸發生過酒精意外燃燒事故的人(如我),一眼就能看出來,這張gif上的效果,其實是酒精或其他易燃液體引起的,這裡高度懷疑是酒精。牛仔褲是棉織物,是不那麼容易引燃的,但是如果灑上酒精,即便是濃度只有20%(體積比)的酒精,也會在體溫的加熱下達到閃點,這時候任何明火都會引起燃燒。幸運的是,在這個屁股酒精燈的案例中,屁股處於酒精火焰溫度最低的焰心部位,如果迅速撲滅是不會造成嚴重傷害的。Cfakepath2

那是不是說,屁能點著純屬謠言呢?非也。屁是易燃氣體!

屁的成分是什麼?出乎你意料的是,其中99%的成分都是無味的。這些氣體包括:氫氣、甲烷、二氧化碳、氮氣和氧氣。其中的氮氣和氧氣均來自於飲食時隨著食物團被嚥下的空氣。而剩下的三種,則要感謝腸道細菌的貢獻[1]。因為今天說的事兒跟屁臭味兒無關,所以我們暫且按下那1%不表。在腸道細菌產生的三種氣體裡,有兩種是可燃的,其中的甲烷名氣大,因為從幾年前開始人們就開始把全球變暖的一個原因歸咎於牛羊排出的大量甲烷。的確,牛羊等反芻動物的消化道內有大量可以分解纖維素的細菌,它們在幫助牛羊充分利用食物的同時,會產生大量的甲烷。但是人卻不像牛羊那樣是穩定可靠的甲烷生產者,有研究發現有的人就不會產生甲烷[2]

屁裡面有氫氣,這個就高端大氣了,畢竟,氫氣是在可預見的未來人類很重要的新能源的希望所在。人屁裡就有,這……實際上,確實有科學家在嘗試用污水和細菌來生產氫氣,或者直接再進一步做成生物燃料電池[3]。其實不只是屁,你呼出的氣裡也有氫氣——腸道里產生的一部分氫氣被吸收進血液,然後在肺裡被排出來。氫氣呼氣檢測經常被用來檢查病患的腸道功能[4]

有氫氣,還可能有甲烷,理論上,屁確實可以點著,但是,能有多大量呢?據研究,每天每個成年人的排氣量大約是0.5升-2升[5],排量真不算大。這些數據是怎麼得到的?我這裡找到過一篇加州大學伯克利分校的科學家在1982年發表的一篇論文[6]。在這個研究裡,他們招募了5位男性自願者,對其臀部進行了仔細的脫毛,然後在其肛門處粘上了腹壁造瘻患者使用的糞袋。糞袋經過改裝,用管子和一個氣體收集裝置相連。不要問我細節,這論文裡沒有圖。類似的方法,還被用來研究狗屁[7],是真狗屁。

在腸道產生的氣體中,大約一半是可燃的氫氣和甲烷。這樣算來,往多了說,如果完全以氫氣計算,每人每天產生的氫氣為1升,燃燒這些氫氣產生的熱量大約是12.6千焦耳,這些大約相當於0.0035度電,收集三百人的屁,理論上大約能讓廣告中傳說一晚上耗電一度的空調工作一夜。或者,更直觀的,一瓶500毫升的可樂含有的熱量是900千焦耳。但是如果喝了可樂,你的排量會有明顯的增加,但增加的部分都是二氧化碳。

大家也許都有這種體會,人的排氣量的變化幅度還真是挺大的,這主要跟你的飲食有關。很多人都有乳糖不耐受,如果一次喝下過多的牛奶,這些人很快就會腹脹腹瀉。腹脹的原因就是由於這些人沒法消化乳糖,就原封不動的把它們送給了腸道細菌,腸道細菌將其分解成一些小分子,同時產生氫氣、甲烷和二氧化碳。不但是乳糖,果糖、果膠、木聚糖等等膳食纖維也會讓腸道細菌產生更多的氫氣。

繞了一大圈,在現實生活中,屁到底能不能點著啊?迄今為止,最可信的點屁實驗是科學節目《流言終結者》做的,熟悉這個節目的人一下就能猜出來,這等無下限的實驗,肯定要抓我們的亞當•薩維奇當小白鼠。確實,他們的團隊為此還專門製作了一個類似婦科檢查床的東西。雖然有屁不放憋壞心臟,可是沒屁硬擠,也不是一件容易事。最終,亞當成功的在高速攝像機面前,在他的臀部,製造了一些小小的火焰。由於過於下三路,這個實驗甚至沒有在日常節目中放出,而是在一些場合作為片花被公開了出來。必須提醒大家,請不要模仿這個實驗,不是怕你炸掉什麼,而是擔心打火機或者其他火源會引燃你的褲子或者毛髮。

5b2b7062gw1e7ejidazblg209h05unpi

總的來說,一天一升氫氣,是挺微不足道的。不過還是有人對此表示擔憂,他們就是太空人。畢竟在宇宙中生活的空間又狹小又密閉,長久待下,如果不加以處理,這些可燃的氣體還是會帶來安全隱患。比如中國的天宮一號,馬上要準備迎接新一批太空人的到來。它體積大約是15立方米,如果三名太空人每人每天產生1升氫氣,兩百天後裡面的氫氣濃度就會達到爆炸極限。嗯,聽上去還好吧。

不過,這總歸是一個安全隱患,為此,一方面他們研究如何探測和清除這些危險氣體,另一方面研究如何通過改變飲食來減少這些氣體的產生[8]。我想,航天員們在天上恐怕很難吃到鹽水煮毛豆或者涼拌水蘿蔔吧。

參考文獻

[1]Suarez, F; Furne, J; Springfield, J; Levitt, M (1997 May). “Insights into human colonic physiology obtained from the study of flatus composition.”. The American journal of physiology 272 (5 Pt 1): G1028–33.

[2]Miller TL; Wolin MJ, de Macario EC, Macario AJ (1982). “Isolation of Methanobrevibacter smithii from human faeces”. Appl Environ Microbiol 43 (1): 227–32.

[3]David C. Holzman. Microbe Power!. Environ Health Perspect. 2005 November; 113(11): A754–A757

[4]Chen X, Zhai X, Shi J, Liu WW, Tao H, Sun X, Kang Z. Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production. Dig Dis Sci. 2013 Jan 31.

[5]Tangerman, Albert (1 October 2009). “Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices”. Journal of Chromatography B 877 (28): 3366–3377.

[6]Diana Marthinsen, S.E.Fleming. Excretion of breath and flatus gases by human consuming high-fiber diets. J.Nutr. 112:1133-1143,1982

[7]Collins SB, Perez-Camargo G, Gettinby G, Butterwick RF, Batt RM, Giffard CJ. Development of a technique for the in vivo assessment of flatulence in dogs. Am J Vet Res. 2001 Jul;62(7):1014-9.

[8]Calloway DH, Murphy EL. Intestinal hydrogen and methane of men fed space diet. Life Sciences and Space Research [1969, 7:102-109]

關於本文

轉載於科學松鼠會,本文首發於果殼網「科技評論」主題站〈屁能被點著嗎?


數感宇宙探索課程,現正募資中!

文章難易度
科學松鼠會_96
112 篇文章 ・ 3 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀


0

2
4

文字

分享

0
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook