1

0
0

文字

分享

1
0
0

華生登場,一鳴驚人— 超級電腦聰明過人?

科學月刊_96
・2011/06/08 ・4976字 ・閱讀時間約 10 分鐘 ・SR值 547 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

過去的「深藍」僅是意味資料庫與運算能力上的突破, 今日的「華生」則能夠理解人類語言,並且具備分析能力。

文 / 連以婷
美國電視節目「危險境地」(Jeopardy!)自2011年2月15日起,一連三天展開益智答題競賽,題目範疇涵蓋歷史、文化、文學、科學等範疇,參賽者中有兩位世界紀錄保持人,分別是詹寧斯(Ken Jennings)以及魯特(Brad Rutter),而挑戰者名為「華生」(Watson),三位參賽者將在三天的比賽中,爭奪100萬美元的冠軍獎金。

主持人:「這個字含有四個字母,是馬蹄鐵,也是賭場中用來發牌的盒子。」
華 生:「Shoe」
主持人:「沒錯!」

圖一:華生在美國電視節目「危險境地」中與兩位紀錄保持人進行比賽,爭奪百萬獎金,展開為期三天的高難度「益智問答」競賽,這也是史上首次呈現電腦與人類在益智問答上公開較勁。

比賽一開始,華生就拔得頭籌,面對兩位紀錄保持人,華生沒有一絲畏懼的神情,從容自在的按下搶答鈕,回答出正確答案並贏得400美元的獎金積分。

主持人:「意思為時尚優雅,或是同屆畢業生。」
華 生:「chic(時髦的)」
主持人:「不對!」
魯 特:「class」
主持人:「正確!」

在第一天的比賽中,大部分時間由華生保持領先優勢,直到最後的幾題才讓魯特迎頭趕上,最後華生與魯特以累積獎金積分5000美元暫時領先,而詹寧斯則暫時以2000美元落後。華生沉著穩定的表現吸引了全場的目光,但到底是怎樣的一位參賽者,能以毫無畏懼的姿態同時挑戰兩位紀錄保持人,表現甚至還略居上風呢?

新生代超級電腦誕生

「華生」的全名為IBM Watson,以IBM創辦人Thomas J. Watson命名,是繼「深藍」後,IBM研發出新一代挑戰人腦的超級電腦。

「深藍」(Deep Blue)在1997年打敗世界西洋棋棋王,曾引起廣大的注目,當時「深藍」儲存了世界上所有的棋譜,運算速度為每秒2億步棋,在與人類對弈時可搜尋及估計隨後的12步棋,而一名人類西洋棋好手大約可估計隨後的10步棋。但是「深藍」的勝利只是意味電腦在有固定規則與邏輯、屬於數學計算性質的領域中取得重大突破,並不表示電腦已突破往日的框架,可以理解人類的語言、跟人類進行互動,甚至幫人類解決問題。

要讓電腦了解自然語言,也就是一般人日常溝通所使用的語言,一直是電腦科學最大的挑戰,也是好萊塢科幻電影演不膩的主題。IBM在「深藍」退役後,把重心放在自然語言上,他們希望打造一個像《星艦迷航記》(Star Trek)影集裡能和人類互動,幫助人類做出重大決定的電腦,但首要條件就是聽得懂人類語言、能夠和人類談話,華生也就是在這樣的期待中誕生了。

圖二:IBM華生的專屬標誌。華生能夠進行深度分析,並在 3秒之內回答「危險境地」節目中的問題。此外,IBM團隊亦致力於將相關技術往醫療、金融等產業發展。

2007年,華生研究中心(IBM Thomas J. Watson Research Center)費魯奇博士(Dr. David Ferrucci)開始思考讓電腦參加益智性問答節目的可能性,他提出「華生」電腦的研發構想,希望透過參賽,利用自然語言技術和超級運算能力,讓華生快速、準確且有策略地回答問題,進一步接近人類更複雜的知識和語言領域。費魯奇博士將「危險境地」鎖定為挑戰對象,但要贏得比賽可不是那麼容易,因為該節目在美國家喻戶曉,以高難度著稱;參賽者除了需要有豐富的知識,更要從得到的線索中察覺語言所隱含的細微差別。對於含意曖昧、使用隱喻,並含有諷刺、雙關意義的機智謎題或詩歌,人腦都能順利理解,但電腦通常無法做到,因為電腦系統的分析能力習於執行準確的要求。

為了達成這史無前例的挑戰,由費魯奇博士領軍,帶領IBM華生研究中心的25位研究員,耗費四年的時間,研究自然語言技術的利用和超級運算能力,此為IBM每年投入約六十億美元的研究專案之一。

圖三:費魯奇博士。費魯奇博士提出華生電腦的研發構想,將「危險境地」節目鎖定為挑戰對象,帶領其團隊鑽研自然語言以及運算能力方面的技術。

首先建構華生的大腦,他們使用擴充性良好的Power 750伺服器主機,組合成10台機櫃,共2880個POWER7處理器核心,能同時運行逾千項數據分析工作,即時運算15TB的數據,運算速度每秒可執行80兆次,而一般電腦每秒可做千億次運算。接著華生的記憶體被灌進了100萬本書,包括百科全書、莎士比亞劇本、地圖圖鑑、新聞等,總計華生的資料庫裡累積了約2億頁來自各個領域的知識。當龐大資料庫建立後,如何分析問題並找到最佳答案?華生採用的關鍵技術為「DeepQA」(深度問答)技術,能融合自然語言處理、智慧資訊檢索、知識表徵、推理和學習機制等。螢幕上「華生」的形象是一顆地球,有光線圍繞閃爍,宛如星軌,而星軌的顏色代表華生的「臉色」,當華生很有信心,星軌會呈現綠色,沒信心時,則是橘色。

比賽來到第二天,所有題目的獎金都提高了,比賽也正式進入白熱化階段,首先由前一天成績最低的詹寧斯選題。
詹寧斯:「我選『放心吧!』獎金2000元的題目。」
主持人:「你其實只是長了痤瘡,並沒有受到韓森氏病(Hansen’s Disease)的感染。」
華 生:「痲瘋病(leprosy)」
主持人:「正確!」
當主持人用字正腔圓的英文念完題目,華生幾乎是同時按下了搶答鈕,回答出正確答案,到底華生是如何在短短的幾秒鐘內辦到呢?

判讀人類語言的意義與脈絡

當人們在交談時,通常都能透過前後文知道對方的問題,但對電腦而言卻極為困難,想想當你試圖使用翻譯軟體翻譯一段完整句子時的慘狀就知道了。電腦在分析一個英文問句時,需先判別主詞、動詞、受詞與介系詞;有些字還不只有單一個意思,電腦還需從眾多意思中挑選符合的出來。另一個問題是當電腦嘗試模仿人腦以經驗為基礎的思考方式,需要很冗長的計算過程,若只是回答一個簡單問題,用最快的處理器,大約也需要2小時才能計算出答案。若想要從電腦中快速地得到答案,最常使用的是「關鍵字」搜尋,電腦會從網路上、說明書中把有關鍵字的網頁或句子一一列舉出來,但這個方法雖然快速,若關鍵字不夠精確,仍需耗費許多時間過濾資料。

華生與只能理解基本問題或以相關資料列表的關鍵字搜尋引擎不同,它可以理解並處理人類的自然語言,進行語句結構或文本分析。在比賽進行中,每當主持人提出一個新問題,在沒有與網路連線的情況下,華生運用600萬條邏輯規則來了解人類語言的意義和前後脈絡,從內建的2億頁文字中,藉著IBM POWER 7處理器每秒運算500GB資料能力,火速搜索、瀏覽、對照,交叉分析文章段落,用數百種演算法搜尋出每個可能的答案,並算出每個答案的信心指數(Confidence level),最後用機器合成聲音回答,但如果對答案的信心指數不高時,華生會直接放棄回答,而不會冒險作答。以這樣的方法,在大部份狀況下,華生都能比兩位人類對手更快答對。

在第二天的比賽中,華生一路遙遙領先另外兩名參賽者,令人驚訝的是,當它不確定答案時,除了臉色變為橘色,它還會說:「我猜猜看!」當碰到「每日雙倍獎金」(Daily Double)問題,華生以悅耳的電子合成聲音說:「我下注6435美元。」主持人和所有人都很好奇這個數目是怎麼跑出來的,但主持人卻說:「我不要問!」

當第二天的比賽來到尾聲,主持人揭開了最後一題題目,這一題題目不是搶答題,而是每位參賽者在各自的作答區中寫下答案,並寫出下注的金額,答案公佈後,每位參賽者依下注的金額得到或失去不同的獎金。

主持人:「第一個提示,美國城市;第二個提示,這個城市以二次世界大戰的一位英雄及一場知名戰役,分別命名它第一大與第二大的機場。」
詹寧斯:「芝加哥」
魯 特:「芝加哥」
華 生:「多倫多???」

正確答案是芝加哥,因為芝加哥以二次世界大戰中的王牌飛行員歐海爾少校(O’Hare)及中途島(Midway),來為它的兩大國際機場命名。但儘管華生在這一題答錯了,不過影響不大,因為它精明地只下注947美元。

圖四:華生研究中心主建築,位於美國紐約州約克鎮。

華生也會犯錯?

偶爾華生也會犯下錯誤,但跟一開始的練習賽比起來,現在的狀況可稱得上完美!一開始的練習賽可說是慘不忍睹,當時許多千奇百怪的答案惹得工程師們各個捧腹大笑,不是把性別搞錯,就是把應該是地名的答案回答人名。有時候比賽的題目會暗示性別,對人類而言可以輕而一舉的知道暗示,但對華生來說卻是一大挑戰,也鬧出不少笑話。比如說它搞不懂當問題出現「第一夫人」時,有很大的可能性是在指女性,或當題目類別是「歷史上的女性」,它反而回答出男性的名字,IBM為此花了超過一年的時間訓練華生,直到2010年的夏天才有長足進步。

另一個需要克服的是華生的發音,就單純的英文字而言,華生的發音不是問題,但對不是英文的外來字發音,或是外國人名,華生一開始吃了許多虧,它曾經把無尾熊(koala)念成可樂(cola),或是把重音的位置放錯而出現奇怪的發音。

經過不斷地訓練與改進後,華生的答題正確率從一開始2007年2月份的15%,2008年8月上升到參賽者平均60%的答題正確率,到2009年11月華生第一次與參賽者進行練習,此時的答題正確率已到達總冠軍程度的90%。

但聰明過人的華生怎麼會把多倫多當成「美國城市」呢?費魯奇博士說,在訓練華生的過程中,研究員一直灌輸它一個重要答題的技巧,就是節目給的所有提示都要一併考慮,對於那些看似枝微末節或是表面訊息,絕對不可視為理所當然或是妄下斷語。因此華生可能認為「美國城市」並不是一個真正的提示,再加上從它的資料庫中找不到充分的證據,證實「芝加哥」、「機場」、「芝加哥的機場」與「二次世界大戰」這幾個關鍵詞之間的關係,信心水準只有三成而已,因此沒有拿下這一題。雖然華生出錯,但費魯奇博士很樂觀地把華生的失誤當成一種鼓勵,他說:「華生透過參加人類的益智節目,更了解自己的優缺點。」

第三天的比賽由主持人正經八百的說:「現在,我知道多倫多是美國城市。」揭開序幕,但華生一點也沒有受到昨天失誤的影響,仍四平八穩的回答每一題答案。最後華生以累計獎金積分7萬7147美元,打敗詹寧斯的2萬4000美元,以及魯特的2萬1600元,拿下最終勝利,並獲得百萬美元的冠軍獎金。比賽結束後,詹寧斯也在螢幕上打趣地寫下「我在此,歡迎新的電腦統治者」,向他的機器人競爭者華生致意。

朝未來邁進

華生的勝利象徵著IBM近年來在電腦系統的研究達到另一個新高峰,也開啟了下一波電腦運算的新頁,未來電腦不再只是台「計算機」,而是台「有溝通與學習能力的機器」,它可以讀懂人類的語言,自行思考分析、消化學習,再從中幫助人類挖掘各種更具創意、或創新的最佳解答。無論在工業、商業、醫療或法律上,它都可以提供更具價值的建議來幫助企業、機構或個人進行決策。或許不久的將來,你可以像「危險境地」的主持人一樣拐彎抹角的問問題,也可以直接了當的請求幫忙,它絕對理性,也不會意氣用事。

有些人可能會擔心或許未來華生背後的技術將凌駕人類的智慧,但費魯奇博士表示,這些擔心都是多餘的,電腦分析龐大資料是它「思考」的方式,但其中扮演如同大腦分析的技術,是奠基在人類的智能上,再輔以卓越運算能力,才完成精確有效率的資料分析。而這些科技,即將提供人們超乎想像的智慧應用,幫助人類突破限制,在過往機器無法涉獵的領域發揮所長。費魯奇強調,人類智慧仍持續支配電腦,就如同在網際網路的時代,人們並未被網路主宰。

後 記

當我在寫稿時,為了蒐集資料而瀏覽網頁,不知為何我的電腦中毒了,所有資料全部不見,也不能上網。就在我心急的打電話給認識的人,問該怎麼辦時,我突然想到華生,如果我有一台像華生一樣的電腦,他不需要連上網就可以幫我解決問題,而我只需要著急的問他:

「華生,當我在瀏覽某某網頁時,電腦突然壞掉了,所有資料都不見,我不知道是不是中毒了,但我需要回復資料,我該怎麼辦?」

這時只見華生不疾不徐地說:

「首先,看看電腦硬碟空間是否有改變,如果沒有的話,把硬碟拔出,連接其他電腦,然後……」

作者連以婷:科學月刊特約編輯 | 本文為《科學月刊》2011.6月號封面故事「華生啊,你自認超越人腦了嗎?

文章難易度
所有討論 1
科學月刊_96
231 篇文章 ・ 2271 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

4
0

文字

分享

0
4
0
SmartReading 科普閱讀力大賽——打造新世代自主閱讀指標,培養學子適性成長!第三屆頒獎典禮暨第四屆賽事啟動!
PanSci_96
・2022/09/26 ・3811字 ・閱讀時間約 7 分鐘

108 課綱開啟全新閱讀素養時代。

科學素養不再侷限於考試的解題方法,學生閱讀科學讀物時,如何在氾濫資訊中找到高品質、適合學習程度的科學素材,是教育現場至關重要的課題。

臺灣師範大學 SmartReading 團隊將 AI 讀物難度分級技術,透過測驗、選書、閱讀、讀後回饋四大功能,完整記錄孩子的學習歷程,提升中小學生科普閱讀動機,成為自律自主的科普學習者。

臺灣師範大學於 110 年至 111 年間,與國科會、新北市、臺中市等單位合作,連續辦理三屆「SmartReading 科普閱讀力大賽」,每屆競賽歷時半年。競賽組別以國小三年級至高中一年級共分七個組別。參賽學校涵蓋臺北市、新北市、臺中市、臺南市、高雄市、花東等十九縣市,報名參賽人數累計八千餘人。

國立臺灣師範大學第四屆科普賽將擴大辦理,邀請PanMedia泛科學馮瑞麒總經理、數感實驗室賴以威教授、臺大科教中心賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章。圖/國立臺灣師範大學

由系統建置適合學生閱讀的兩千多本科普讀物

競賽期間,參賽學生使用「SmartReading 適性閱讀」系統,透過精準快速的中文閱讀能力診斷,將閱讀程度與讀物難度適配。藉由系統已建置,適合國小三年級至高中一年級的 2,180 餘本科普讀物,不僅能激勵其學習動機,更可有效提升選擇的效率,降低科學閱讀恐懼。第三屆科普閱讀力大賽不受疫情波擾,採實體與線上兩種施測方式,於 111 年 5 月份圓滿完成賽事。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。圖/國立臺灣師範大學

臺師大宋曜廷副校長表示,數位閱讀邁向新時代,團隊使用「SmartReading 適性閱讀」系統作為科普賽競賽平台,期望在知識爆炸的時代,藉由測驗、選書、規劃的「智慧閱讀三步驟」,培養學子的跨領域閱讀力與閱讀習慣,讓學生們手握知識大門的鑰匙,成為自律自主的「SmartReader」。

科普閱讀競賽的三大特色

一、適配閱讀能力與圖書難度,擴增多元書籍與文章素材

參賽學生首先須參加中文適性閱讀能力診斷(DACC),依據診斷結果,配合其當前閱讀能力的科普推薦書單,讓學生選書有依據、個人化。本競賽目前共有「推薦書單」、「推薦文章」等 2 種閱讀素材,主題包含植物/動物、數學、天文地科、物理/化學等 8 大類別。「推薦文章」功能,則與「PanSci 泛科學」及「數感實驗室 Numeracy Lab」合作評選,當前提供 600 餘篇線上科普短文,競賽期間提供已超過 4,000 人次的瀏覽次數。

二、綜合性閱讀五力分數,開啟學生全方位閱讀力

本競賽賽程為期半年,學生透過「前測、閱讀任務挑戰、後測」三個階段。競賽期間,系統詳細記錄每週閱讀歷程,並產出線上「閱讀五力分數」報表。自主規劃閱讀期間計算為「規劃力」;讀後評量填答結果計算為「執行力」;閱讀多元書籍類別的結果計算為「博學力」;閱讀單一書籍類別的深化成果則計算為「精進力」;前後測成長結果計算為「成長力」。將閱讀能力數據化、可視化。

三、閱讀任務徽章,深化學生文化素養與科普閱讀興趣

本競賽內建徽章蒐集系統,參賽者於指定時間依據提示完成閱讀任務,即可獲得期間限定的特色科普徽章。任務內容包含閱讀指定的書單及文章類別、世界性科普節日、科學家生辰、台灣重要節慶與其他隱藏任務。本屆各年級累計獲得徽章達 20423 枚,因設計活潑及任務類型多樣,大受參賽者好評。

競賽結果發現學生的閱讀偏好

一、科普閱讀參與,國小男性最踴躍

活動期間參賽者共完成約 21,153 本的書籍評量。以不同學習階段來看;國小參賽者整體閱讀平均本數為 24 本,男生平均閱讀本數為 28 本,女生平均閱讀本數為 20 本。國、高中參賽者因科普讀本難度較高,需要較長的閱讀時間及一定的科學基礎知識,國中參賽者整體平均閱讀書籍數為 10 本;高中參賽者中女性平均閱讀本數多於男性,整體平均閱讀書籍數為 7 本。

總閱讀量/本人數平均閱讀量/本
全體學生21,1531,10019
8,05150516
13,10259522
國小學生17,47971624
6,47432520
11,00539128
國中學生3,45935510
1,4611669
1,99818911
高中學生215297
116148
99157
活動期間參賽者共完成約 21,153 本的書籍評量。表/國立臺灣師範大學

二、學生偏好閱讀動物/寵物類與地球生態/天文類書籍

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類(男生 28.19%、女生 27.91%)最能引起學生的閱讀興趣(如:《昆蟲老師上課了!:吳沁婕的超級生物課》、《小島上的貓頭鷹》、《神奇樹屋》等系列)。在次要類別,男女皆喜好生態/生命科學類的書籍(男生 15.20%、女生 16.87%)。

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類最能引起學生的閱讀興趣。在次要類別,男女皆喜好生態/生命科學類的書籍。圖/國立臺灣師範大學

三、參賽學生閱讀歷程的質與量均佳,表現令人驚豔

本次參賽學生皆積極參與競賽。

以三年級組第一名得主,臺北市立大同國小的林靖軒同學為例,競賽期間閱讀書籍本數高達 383 本,書籍讀後評量的通過率更高達 95%,書籍不僅讀得多,更是能讀得要領。

四年級組第一名為第二次參賽的新北市信義國小謝秉言同學,本次競賽期間共閱讀 427 本書。

其中五年級組為本次競爭最激烈的一組,臺北市立長春國小的黃葦川同學以及高雄市立集美國小的吳勁毅同學,兩者僅以極小的分數差距位居第一及第二名。

此外,第一次參與競賽的高雄市立正義國小的孫政遠,競賽期間閱讀 281 本書籍,通過率達到 97%。

四、教育主管機關、學校師長及家長支持鼓勵,帶動學生優異表現

新北市教育局致力於推動智慧閱讀教育,不遺餘力,成果豐碩。本屆競賽全台共 2,104 人報名參與,全國賽獎項獲獎學生共計 36 人,其中新北市得獎學生便囊括 14 位,表現相當亮眼。

家長與學校師長共同陪伴,使得學生能專注於本次競賽,並有相當卓越的成果,例如新北市康橋國際學校、臺中市明道中學、臺中市葳格國際學校、臺北市東山中學等校,皆因全力推廣閱讀活動,才能有優異的競賽成果。以新北市康橋國際學校國中部為例,此次七年級組參賽者,全國賽前5名得主中,康橋中學就獲有 3 名的佳績。

臺師大華語文與科技研究中心洪嘉馡教授說明第三屆科普閱讀力大賽成果。圖/國立臺灣師範大學

第四屆科普閱讀力大賽即將開跑

延續前三屆廣受好評之科普賽事,第四屆科普賽將擴大辦理,邀請「PanMedia 泛科知識股份有限公司」馮瑞麒總經理、「數感實驗室 Numeracy Lab」賴以威教授、「國立臺灣大學科學教育發展中心」賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章,預期第四屆科普閱讀力大賽將能讓全球讀者有更高品質的閱讀體驗和更充實的閱讀收穫。

活動詳情請參閱官方網站
新聞聯絡人:高等教育深耕計畫辦公室——鄭德蓉 02-2366-0916 #111

PanSci_96
1011 篇文章 ・ 1121 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(nitial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

6
0

文字

分享

0
6
0
科普閱讀力UpUp!泛科學、數感實驗室加入臺師大第三屆 SmartReading 科普閱讀力大賽
PanSci_96
・2021/10/16 ・1578字 ・閱讀時間約 3 分鐘

閱讀素養是從小便需要培養的重要能力,不過,要讀得好、讀得懂,卻不是件容易事。為了協助學生深入閱讀不偏食,臺師大與科技部攜手合作,通過科普閱讀力大賽,陪孩子一起跑一場科普閱讀馬拉松。

第二屆順利結束後,第三屆閱讀力大賽更邀請了泛科學(泛科知識股份有限公司)、數感實驗室 Numeracy Lab 一起加入,讓內容更多、更廣,希望帶給學生們滿滿的閱讀力!

學生讀得太淺怎麼辦?SmartReading 適性閱讀陪你深入閱讀

光是 2020 年,台灣共出版了 3 萬 5 千多種出版品,可說是什麼都有、什麼都不奇怪,然而,孩子們到底有沒有讀「懂」呢?

國立台灣師範大學宋曜廷副校長分享了史丹佛大學最新的研究,其中發現:有近 2/3 的高中生無法區分網站上的「新聞」與「廣告」,凸顯學生們讀得「淺」的問題。此外,需要思考與批判的科普閱讀,歷年推行總是遇到不少阻礙,因為較缺乏故事性,常常被學生們「打入冷宮」。

上述種種難題,到底該如何克服呢?就去參加配備「SmartReading 適性閱讀」系統的科普閱讀力大賽吧!

參與科普閱讀力大賽的學生們,需要先參加中文適性閱讀能力診斷(DACC),透過診斷結果,為每位學生量身打造專屬「推薦書單」。獲得書單後,學生們便可以依照自己喜歡的進度和方式去挑戰閱讀任務,選擇自己喜歡的書籍,最後進行評量,確認閱讀成效。

除了量身打造的閱讀計畫,閱讀力大賽還特別設計了超級有趣的科普徽章,像是科味滿滿的「π」徽章,就讓孩子們愛不釋手,嘗試增加閱讀量、甚至挑戰並不熟悉的作品類別,努力得到專屬徽章。

更厲害的,是超深入的「閱讀五力分數」評量系統,不但為考慮學生自主規劃閱讀的「規劃力」、填寫評量的「執行力」,還會考量學生閱讀的多元程度,看看他們是否具有「博學力」以及代表閱讀深入程度的「精進力」等等。再輔以前後測的閱讀成長情況,計算「成長力」,可說是任何閱讀的面向都不馬虎!

學生們都喜歡讀什麼?動物、生態惹人愛

第二屆科普閱讀力大賽中,共有 2 千多位學生報名,歷經半年,共完成了近 8 千本書籍評量,平均一位學生閱讀了 13 本書籍。

看了這麼多內容,哪些是孩子最喜歡的呢?動物/寵物類遙遙領先,再來則是地球生態、天文類相關書籍。有趣的是,進入國中之後,學生們的閱讀習慣也逐漸轉變,心頭最愛變成了是地球生態/天文類書,再來則是綜合科學類。

國小參賽者更是這次比賽的小小黑馬,像是四年級組第一名的吳同學,在比賽期間不僅閱讀了 250 多本書籍,更在評量中幾乎都得到 A、A+,不僅讀得多、讀得好,更是讀得懂。

第三屆科普閱讀力大賽開跑!攜手泛科、數感一起提升閱讀力

新的閱讀馬拉松馬上就要開跑了,第三屆科普閱讀力大賽將與泛科知識、數感實驗室Numeracy Lab 一起合作,繼續將科學內容變有趣,配合學生的需求、增進學習動機。

泛科知識馮瑞麒總經理表示非常高興網站上的文章能夠成為閱讀素材,更笑言經過了「9SmartReading 適性閱讀」系統才知道原來有些原以為只適合高中生的內容,其實也可以提供給國中生們閱讀,透過這樣的系統,相信能夠幫助更多學生獲得適合的書籍。

來自數感實驗室Numeracy Lab 的賴以威教授則說,能以這些數據的方式解決像是閱讀這樣的人文問題,實在是令人期待又興奮。

究竟,接下來這場馬拉松會帶著學生們跑到哪裡?又會帶他們看到什麼樣的風景呢?更多訊息,歡迎關注比賽官網:https://smartreading.net/contest2021/index.aspx

PanSci_96
1011 篇文章 ・ 1121 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。