0

0
0

文字

分享

0
0
0

臺灣的雨與水

活躍星系核_96
・2011/06/03 ・2175字 ・閱讀時間約 4 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

本文作者為劉廣英博士,中國文化大學大氣科學系研究教授。

一、楔子

陽光、空氣、水是我們不可少的生命要素,其中以水的不確定性最大。有人甚至認為會發生水的戰爭(De Villiers,1999)。看到這裡,大多數的人會認為沒關係,我們雨多,不會受到波及。如果我說由於我們本身就是個缺水的國家,即使沒發生水戰,也有爭水的危機,大家也許難以接受。然而我們真的是「錢淹腳目,水不及人。」不防看看這筆帳。

二、臺灣的雨

下雨有四個條件

  1. 有水氣源:我們四面環海,且處在亞熱帶高溫區,來自海洋蒸發的水氣充足。
  2. 有凝結核:海水中的鹽份就是很好的凝結核源,我們也不缺。
  3. 上升運動:颱風、鋒面(含冷鋒與梅雨鋒)、地形、熱對流等都伴有上升運動,我們隨時都有。
  4. 厚實的雲:上述天氣系統都會帶來。

準此,我們不該缺雨,實況也確實如此。所以我們平地氣象站的年平均雨量有1900餘毫米,加上高山站後更高達2400多毫米,是世界平均值800毫米的3倍。看起來夠多。實際狀況如何?請看下面的帳。

-----廣告,請繼續往下閱讀-----

三、細算水帳-老天給我們多少水?

雨量指的是「單位面積上的水深」,所以一地之年集水量就等於「年平均雨量乘上該地區之面積」。由而可知老天爺給的雨水約950到1000億立方公尺。這些水如由我們大家平分,每人年得水量約為4300立方公尺。也就是每天約有12立方公尺水可用,這個量在世界主要工業國家中只比英、德兩國多一點。具體點說我們每天都有(2公尺乘2公尺乘3公尺)的「大水池可玩」!

然而,就水而言,由於以下原因,我們真的有不夠用的困境。

四、我們必須面對困境

困境是由三方面的問題所合成:

  • 降雨時空分配不均

由附表可見,我們的雨集中在5、6月梅雨季,以及7至9月颱風期。兩者合計累積雨量占年平均雨量的72%,也就是一年中有七成的雨下在四成之時間內。由附圖更可看到,每年的10月以後,至次年5月以前,除花東與臺北外,各地平均月雨量都在100毫米以下,中南部更不到50毫米。這也就是說,臺中以南的冬春之旱,與春耕缺水基本上是必然現象

-----廣告,請繼續往下閱讀-----

進一步看,受到冬半年盛行東北季風,夏半年盛行西南季風,與地形作用三方面的影響下,在時序上我們的雨也有季節變化。兩句話就是此特性的代表,那就是北與東部流行的「東北風雨祖宗」,與西南部的「西南風落大雨(ㄏㄡ)」。準此,除中央山脈外,我們總有一個地區有雨水不足的問題。

於是,豪大雨時我們希望水快流入大海。可是沒雨時,靠什麼?

  • 存水能力不足

降水時空分布不均就只好靠蓄水補助。然而我們的河流短而降坡大,不但沒有留住雨水的能力,而且大雨時會造成沿途與下游淹水。是以要想把五個月的雨水留住,以供全年使用,靠的就是水庫,然而我們水庫總蓄水量不到30億立方公尺,大約要滿6次方可夠一年的用量。可惜我們的降水分配達不到這個要求。於是只好抽地下水應急!當大家面對地層下陷問題時,應該會擔憂過量抽取地下水有如飲鳩止渴

於是,雨大怕淹,無雨怕旱,抽地下水怕海水入侵的困境,有如一條三頭蟒蛇隨時會纏上我們

-----廣告,請繼續往下閱讀-----
  • 暴雨增  小雨減

這筆帳的一半,也就是污染空氣造成暖化,進而改變降水型態,要怪我們自己;另一半怪大氣流動(氣象上稱大氣環流)異常。於是總雨量並沒變,但小雨日數遞減,豪大雨次數則在增加。這不但造成較多的災害,進一層的影響則是水庫淤積嚴重,讓我們的水更難留住。

五、結果與對策

以上困境不只我們會遭遇到,雨水比我們多8.4倍的美國也有「東邊淹水,西邊旱」的問題,所以我們也不必妄自菲薄,而是要正向面對大自然給我們的限制,那就是我們讓大大小小水庫能滿6次,也就是不缺水用的條件。再加上水庫淤積嚴重,蓄水能力一路下滑。影響所及就是水荒幾已是我們必須面對的常態。不過我們也用不著過度憂心,而是應該立即採取對策。

對策可分為個人與兩方面,以及一個共識問題:

  1. 自己可做的就是節約用水,最好是更進一步愛護水。前者就由日常小節入手,能省則省之。後者就是要改變「水算不得什麼」的觀念。不防想想看,我們曾經「順手」倒掉過多少水?如果那是汽油,甚或是酒,我們會「順手」倒掉否?實際上一杯水可讓人不會渴死,汽油能嗎?以小看大,如果我們每人每月能省下1.5立方公尺(大約就是5標準浴盆)的水,一年下來就可存下一座石門水庫的蓄水量。可說一點困難都沒有。
  2. 政府可做的很多,有些,如什麼樣的用水政策最妥當?水價該如何訂?以及如何可以增加蓄水能力?還需要大家的支持。另外一些,如修管堵漏與增進大水圳效益,以及提高再利用率,則是可以立即進行的事。
  3. 最後,社會大眾與政府可能必須思考如何才能增加我們的蓄水能力。無論是增建水庫,或恢復往時埤塘處處,都不是一蹴可及,應盡早啟動公共政策討論,以利早日定案並動工。

當年推動十大建設時,蔣總統經國先生曾說:「今天不做,明天會後悔。」我們不能也不該「臨渴掘井」。

-----廣告,請繼續往下閱讀-----

參考文獻

涂建翊、余嘉裕、周佳:台灣的氣候。民國九十三年,遠足出版社。
黃兆慧:台灣的水庫。民國九十一年,遠足出版社。
De Villiers, Marq,1999:Water Wars. London, Weldenfeld &Nicolson.

註:劉廣英教授人非常nice,P編兩週前冒昧地寫了封email過去,劉博士在出國之際非常快速的回信,並且允諾回國之後會再跟我連繫,簡單的電話確認邀稿後,博士於昨日將文章連圖示寄給我。在此萬分感謝劉博士。如果各位有任何問題歡迎留言討論,我會轉達給劉博士。

文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

5
2

文字

分享

0
5
2
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

-----廣告,請繼續往下閱讀-----
 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

-----廣告,請繼續往下閱讀-----
  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

-----廣告,請繼續往下閱讀-----

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
0

文字

分享

0
4
0
SmartReading 科普閱讀力大賽——打造新世代自主閱讀指標,培養學子適性成長!第三屆頒獎典禮暨第四屆賽事啟動!
PanSci_96
・2022/09/26 ・3811字 ・閱讀時間約 7 分鐘

108 課綱開啟全新閱讀素養時代。

科學素養不再侷限於考試的解題方法,學生閱讀科學讀物時,如何在氾濫資訊中找到高品質、適合學習程度的科學素材,是教育現場至關重要的課題。

臺灣師範大學 SmartReading 團隊將 AI 讀物難度分級技術,透過測驗、選書、閱讀、讀後回饋四大功能,完整記錄孩子的學習歷程,提升中小學生科普閱讀動機,成為自律自主的科普學習者。

臺灣師範大學於 110 年至 111 年間,與國科會、新北市、臺中市等單位合作,連續辦理三屆「SmartReading 科普閱讀力大賽」,每屆競賽歷時半年。競賽組別以國小三年級至高中一年級共分七個組別。參賽學校涵蓋臺北市、新北市、臺中市、臺南市、高雄市、花東等十九縣市,報名參賽人數累計八千餘人。

國立臺灣師範大學第四屆科普賽將擴大辦理,邀請PanMedia泛科學馮瑞麒總經理、數感實驗室賴以威教授、臺大科教中心賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章。圖/國立臺灣師範大學

由系統建置適合學生閱讀的兩千多本科普讀物

競賽期間,參賽學生使用「SmartReading 適性閱讀」系統,透過精準快速的中文閱讀能力診斷,將閱讀程度與讀物難度適配。藉由系統已建置,適合國小三年級至高中一年級的 2,180 餘本科普讀物,不僅能激勵其學習動機,更可有效提升選擇的效率,降低科學閱讀恐懼。第三屆科普閱讀力大賽不受疫情波擾,採實體與線上兩種施測方式,於 111 年 5 月份圓滿完成賽事。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。

-----廣告,請繼續往下閱讀-----
111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。圖/國立臺灣師範大學

臺師大宋曜廷副校長表示,數位閱讀邁向新時代,團隊使用「SmartReading 適性閱讀」系統作為科普賽競賽平台,期望在知識爆炸的時代,藉由測驗、選書、規劃的「智慧閱讀三步驟」,培養學子的跨領域閱讀力與閱讀習慣,讓學生們手握知識大門的鑰匙,成為自律自主的「SmartReader」。

科普閱讀競賽的三大特色

一、適配閱讀能力與圖書難度,擴增多元書籍與文章素材

參賽學生首先須參加中文適性閱讀能力診斷(DACC),依據診斷結果,配合其當前閱讀能力的科普推薦書單,讓學生選書有依據、個人化。本競賽目前共有「推薦書單」、「推薦文章」等 2 種閱讀素材,主題包含植物/動物、數學、天文地科、物理/化學等 8 大類別。「推薦文章」功能,則與「PanSci 泛科學」及「數感實驗室 Numeracy Lab」合作評選,當前提供 600 餘篇線上科普短文,競賽期間提供已超過 4,000 人次的瀏覽次數。

二、綜合性閱讀五力分數,開啟學生全方位閱讀力

-----廣告,請繼續往下閱讀-----

本競賽賽程為期半年,學生透過「前測、閱讀任務挑戰、後測」三個階段。競賽期間,系統詳細記錄每週閱讀歷程,並產出線上「閱讀五力分數」報表。自主規劃閱讀期間計算為「規劃力」;讀後評量填答結果計算為「執行力」;閱讀多元書籍類別的結果計算為「博學力」;閱讀單一書籍類別的深化成果則計算為「精進力」;前後測成長結果計算為「成長力」。將閱讀能力數據化、可視化。

三、閱讀任務徽章,深化學生文化素養與科普閱讀興趣

本競賽內建徽章蒐集系統,參賽者於指定時間依據提示完成閱讀任務,即可獲得期間限定的特色科普徽章。任務內容包含閱讀指定的書單及文章類別、世界性科普節日、科學家生辰、台灣重要節慶與其他隱藏任務。本屆各年級累計獲得徽章達 20423 枚,因設計活潑及任務類型多樣,大受參賽者好評。

競賽結果發現學生的閱讀偏好

一、科普閱讀參與,國小男性最踴躍

-----廣告,請繼續往下閱讀-----

活動期間參賽者共完成約 21,153 本的書籍評量。以不同學習階段來看;國小參賽者整體閱讀平均本數為 24 本,男生平均閱讀本數為 28 本,女生平均閱讀本數為 20 本。國、高中參賽者因科普讀本難度較高,需要較長的閱讀時間及一定的科學基礎知識,國中參賽者整體平均閱讀書籍數為 10 本;高中參賽者中女性平均閱讀本數多於男性,整體平均閱讀書籍數為 7 本。

總閱讀量/本人數平均閱讀量/本
全體學生21,1531,10019
8,05150516
13,10259522
國小學生17,47971624
6,47432520
11,00539128
國中學生3,45935510
1,4611669
1,99818911
高中學生215297
116148
99157
活動期間參賽者共完成約 21,153 本的書籍評量。表/國立臺灣師範大學

二、學生偏好閱讀動物/寵物類與地球生態/天文類書籍

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類(男生 28.19%、女生 27.91%)最能引起學生的閱讀興趣(如:《昆蟲老師上課了!:吳沁婕的超級生物課》、《小島上的貓頭鷹》、《神奇樹屋》等系列)。在次要類別,男女皆喜好生態/生命科學類的書籍(男生 15.20%、女生 16.87%)。

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類最能引起學生的閱讀興趣。在次要類別,男女皆喜好生態/生命科學類的書籍。圖/國立臺灣師範大學

三、參賽學生閱讀歷程的質與量均佳,表現令人驚豔

-----廣告,請繼續往下閱讀-----

本次參賽學生皆積極參與競賽。

以三年級組第一名得主,臺北市立大同國小的林靖軒同學為例,競賽期間閱讀書籍本數高達 383 本,書籍讀後評量的通過率更高達 95%,書籍不僅讀得多,更是能讀得要領。

四年級組第一名為第二次參賽的新北市信義國小謝秉言同學,本次競賽期間共閱讀 427 本書。

其中五年級組為本次競爭最激烈的一組,臺北市立長春國小的黃葦川同學以及高雄市立集美國小的吳勁毅同學,兩者僅以極小的分數差距位居第一及第二名。

-----廣告,請繼續往下閱讀-----

此外,第一次參與競賽的高雄市立正義國小的孫政遠,競賽期間閱讀 281 本書籍,通過率達到 97%。

四、教育主管機關、學校師長及家長支持鼓勵,帶動學生優異表現

新北市教育局致力於推動智慧閱讀教育,不遺餘力,成果豐碩。本屆競賽全台共 2,104 人報名參與,全國賽獎項獲獎學生共計 36 人,其中新北市得獎學生便囊括 14 位,表現相當亮眼。

家長與學校師長共同陪伴,使得學生能專注於本次競賽,並有相當卓越的成果,例如新北市康橋國際學校、臺中市明道中學、臺中市葳格國際學校、臺北市東山中學等校,皆因全力推廣閱讀活動,才能有優異的競賽成果。以新北市康橋國際學校國中部為例,此次七年級組參賽者,全國賽前5名得主中,康橋中學就獲有 3 名的佳績。

-----廣告,請繼續往下閱讀-----
臺師大華語文與科技研究中心洪嘉馡教授說明第三屆科普閱讀力大賽成果。圖/國立臺灣師範大學

第四屆科普閱讀力大賽即將開跑

延續前三屆廣受好評之科普賽事,第四屆科普賽將擴大辦理,邀請「PanMedia 泛科知識股份有限公司」馮瑞麒總經理、「數感實驗室 Numeracy Lab」賴以威教授、「國立臺灣大學科學教育發展中心」賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章,預期第四屆科普閱讀力大賽將能讓全球讀者有更高品質的閱讀體驗和更充實的閱讀收穫。

活動詳情請參閱官方網站
新聞聯絡人:高等教育深耕計畫辦公室——鄭德蓉 02-2366-0916 #111

PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
4

文字

分享

0
8
4
天氣學家看《天氣之子》:雨災不只是淹水,是極端氣候下的慢性死亡
Y.-S. Lu
・2022/03/29 ・4824字 ・閱讀時間約 10 分鐘

新海誠,對大家來說是這五年高品質動畫電影的代表,不管是《你的名字》、《天氣之子》,都讓大家耳熟能詳,而其中的災害主題則扣住了他的愛情主題,不論隕石來時的避難,或是氣候異常的降雨,都是非常值得討論的主題。

筆者做為大氣科學從業人員,本篇文章,想要從《天氣之子》來討論極端氣候,因為極端氣候不僅是聯合國《永續發展目標 (Sustainable Development Goals)》的主要議題,也在近年來深深地影響人們生活。

天氣之子的氣候狀況

這次新海誠用了一個很大膽的主題,也就是主角再也不是為了地球飛去宇宙深處作戰的女高中生(《星之聲》),也不是挽救過去將被隕石毀滅的村子的男高中生(《你的名字》),而是在犯罪邊緣的少年少女,而他們並未為了日本跟地球,而犧牲自己成為人柱。

從某個角度來說,人都有年輕不懂事過,為了愛犧牲理性也非意想不到,但是主角在「拯救世界」與「拯救戀人」之間,選擇戀人而放棄世界,也算是少有的故事情節,因此開映之後,的確造成了一些話題性。

不過,筆者比較有興趣的,是其中的降雨情節。日本降雨從 2021 年持續到 2024 年,的確是不可能的,除了要有足夠的水氣,以及足夠的對流將氣團推往較冷的高空外,還須要足夠的氣溶膠來形成足夠大的水滴,才有機會造成降雨。

-----廣告,請繼續往下閱讀-----

如果電影中的「神」希望靠物理作用,讓日本持續下雨三年,那我想這不會是對流造成的雨:因為在連續降雨而缺乏晴天的日本,潛熱(單純的水蒸發與植物的發散作用)與顯熱(因為地表與空氣溫差造成的熱量傳播)都將成歷史。在夏天時,缺乏地面形成低氣壓的情況下,也無法產生梅雨所需要的對流作用。

所以最有可能的,就是在太平洋上,生成一個熱帶性低氣壓造成的風暴,但又因為氣壓帶的影響,讓此風暴持續盤旋在日本外海,替日本帶來大量的水氣。

要造成三年的連續降雨,最可能的情況就是在太平洋上,生成一個熱帶性低氣壓造成的風暴。圖/envato elements

這樣的風暴若持續一整年不停歇,即使粗估每小時不到 2mm 的降雨量,一年下來也會帶給日本超過 10000mm 的降雨。日本年均降雨約在 1500mm 到 1800mm 左右,此風暴將造成四到五倍的年降雨量,這可能會對日本造成破壞力僅次於《日本沉沒》的最大自然災害。也就是說,光是一直下雨,的確有可能淹沒整個日本的都會區。實際上,2021 年的夏天,德國西部與比利時東部大小城鎮,就在低氣壓氣旋 Bernd[1] 帶來的豪雨下,受到了重大的打擊。

但可惜的是新海誠對於日本淹沒這個概念有點誇大,在影片結尾,日本的「彩虹大橋」被淹沒,彩虹大橋塔高 126 公尺[2],動畫中大約被淹沒超過一半,這邊就先估僅 63 公尺高。

這應該是天氣之子的Bug,因為要淹到 63 公尺的高度,唯一合理的解釋只有全球氣候異常,造成冰河融解。在《自然》科學期刊中,Gregory & Oerlemans (1998) 估算在全球暖化的影響下,考量到冰河區的融化量,海平面到 2100 年將會上升「數公尺」;而美國地理調查所( USGS) 在網頁簡略提到,如果全球冰層溶解,大約會是 76 公尺高[3]

-----廣告,請繼續往下閱讀-----

也就是說,在《天氣之子》中,全球極度暖化,導致海平面上升 63 公尺,這已經是勘比《2012》的世紀災難了。

另外一點,兩年半中經歷氣候變化(真的如主角講的:「我們改變了世界」)後的日本,在海平面上升 63 公尺的情況下,造成將近有 17.41% 的國土面積喪失,而情況最嚴重的則在大東京都地區。

左:災前日本。右:災後日本淹水地區。圖/
Y.-S. Lu. Data Source: Derived from GTOPO-30 tiles, https://lta.cr.usgs.gov/GTOPO30 by CC 4.0

豪雨造成的問題

豪雨可以說是地球上最容易觸發災難的關鍵氣象要素。相較於需要板塊交界的地震、需要大氣運動才能造成的颱風/颶風,以及只有高緯度地區才有的雪災,任何地方只要「會下雨」,就有可能豪雨成災。對土木界而言,水一直是問題也是重點防治對象之一。

所以,撇除不合理的海平面上升之外,這邊還可以再淺談一些《天氣之子》中可能會出現的豪雨災害。

在豪雨的侵害下,日本平地的地下水位應該會保持在地面,而山區的地下水水位也可能會偏高,土壤含水量偏高後,不僅會造成土壤重量上升,亦導致側向土壓上升,再加上日本與台灣一樣,是造山運動強烈的地方,所以坡沙土堆積淺,土石流、泥石流的情況將會十分強烈。

在日本持續降水期間,山區會有許多因為崩坍造成的堰塞湖,山區居民應全數徹離以保全生命安全。

-----廣告,請繼續往下閱讀-----

山區道路除了會因為坍方造成道路中斷,高水位也會超過道路上擋土牆的設計。擋土牆原本就是根據地區水位做估算與設計,但是在連年降雨下,水位高度將超過一般設計的強度,所以道路上的擋土牆也會有坍塌的危險。

豪雨侵襲將帶來嚴重土石流、泥沙淤積與堰塞湖。圖/台灣農委會林務局網頁

而岩層區也會因為岩隙間的水壓上升、破壞岩體,導致挖穿山間的隧道開始因為水壓,而坍塌阻塞。

由於山區的降水無法被土壤吸收保留,所以大多數的水將會匯流到平地,平地的淹水狀況將比往常更嚴重,都市內的排洪系統將完全失效;而河道的防洪牆雖然阻擋了河道暴漲,但都市內的淹水也將難以排除。

都市中的高樓雖然提供了居民可用的居住環境,但是因為大多數的高樓機房都設在地下層,所以樓房機能將損失殆盡,除了電梯無法使用,污水與糞水也將漂滿都市內部,好在連年下雨,所以這些污水早已成為龐大水體的分子,所以也不是真的很「污染」(但感性上不能接受),另外從山區湧入的人口,可能會因為人口擁擠,造成更大的社會與治安問題。

-----廣告,請繼續往下閱讀-----

除此之外,伴隨降雨而來的,還有厚重的雲層。雲層阻擋了陽光,也阻擋了植物進行光合作用,可想而知,日本的農業也會隨之被破壞,菌類養植可以繼續,也就是日本在沒有被核戰爭攻擊的情況下,卻可能必須過著有如《地鐵 (Metro2033)》的生活。

同時,在缺乏陽光的基礎下,人類無法自然產生維他命 D,兒童也將因此生長不良,更惶論因為長期陰天導至人們憂鬱症比例上升。

連日下雨缺乏陽光,容易導致人們憂鬱。圖/envato elements

在豪雨不斷的氣候異常下,原本就存在的極端天氣狀況只會更甚,日本連年降雨,就有可能是某處連年乾旱。在動畫中,日本的異常降雨,代表人類的世界可能只是將更快速地步向滅亡。畢竟現今為了減低溫室效應造成的危機,各國正在提出方法來淨零,但《天氣之子》一口氣就造成了更嚴重的氣候影響。

總而言之,《天氣之子》與其說是放棄日本拯救少女,其實更有可能是放棄全世界整救少女。

當德國遇上「天氣之子」

近年最大的洪災,便發生在 2021 年,從美洲到歐亞洲,各國都遭遇到了前所未見的洪災。

2021 年,當德國還正因為 COVID-19 感染人數下降,逐步微解封之時,七月發生的大水災,造成了人命與財物[4]的重大損失。除了高達 70 億歐元的保險賠償外,德國西部的 Ahweiler、Erftstadt、Hagen 等城鎮被淹沒、房屋被沖毀,許多河道旁的居民,也在雨災過後丟出許多被洪水泡毀的家具電器,損失慘重。

-----廣告,請繼續往下閱讀-----

雖然部份民眾將炮火轉向預警系統的失敗[5],但預警系統並非毫無作用。在德國可以裝 NINA app 做為推播使用,某些城市也會有警報廣播系統,但即便已發出手機 app 的警報,以及俗稱 Siren 的警報,民眾不一定會意識到災難的到來並進行疏散,也有民眾忽略警報選擇不避災,甚至有民眾說從未能想像德國發生「有如第三世界」的洪災,但事實上,德國大河(如萊茵河、易北河)在近 10 年內,就有過類似洪災的紀錄。

德國7月洪災淹沒了城鎮。圖/德國之聲 新聞截圖

2016 年時,德國酒鄉之一的阿爾魏勒(Ahweiler),其周邊的阿爾河(Ahr)就氾濫過一次,當年低氣壓帶來連日的綿綿大雨,造成了小部份地區被水淹沒;但是當 2021 年的洪災再次來臨,居民還是覺得很震驚,可見該地區的居民對洪災是缺乏想像的。

2021 年的這場洪災,德國城鎮的管理層級並非沒有作為,筆者居住的小鎮,在洪峰來臨前十二小時就已封閉橋樑,許多志工開始投入疏散河提居民的工作,將居民安置在大賣場,且有志工開車接送。然而,在河水暴漲的岸邊,不僅有路人無視路障通過,有更多人在岸邊拍照,紀錄淹水狀況。受災區域亦同。

但是話說回來,居民與當地警消的這種反應可能也是非戰之罪,因為許多的測站都遭遇到破紀錄的水位高,如阿爾魏勒的測站阿爾特納爾(Altenahr)在資料中寫下了「最高紀錄」[6],但是因為測站毀損,沒有具體數字;有學者則提出,這是 200 年洪災的規模。但是防災等級的提升,也意謂著公共工程經費的支出。如何在兩者間取得共識,一直是防災工程的大哉問。

德國的氣象預警也並非無作為,但並不是所有的預告都能說服人,歐洲中期天氣預報中心 (ECMWF) 的叢集預策系統 (Ensemble Prediction System)利用了氣象模擬中的不確定性,以多重運行結果進行機率預測,來替代傳統的單一運行的單一結果。然而,即便用上機率預測方法,也只能在極端的機率 (第 99 percentile) 下預測到德國西部會有 122mm/day 的最大降雨,而德國氣象中心 (DWD) 的在當日所量測到的是 144mm/day 最大降雨。

-----廣告,請繼續往下閱讀-----

嚴格說來 ,即便使用了叢集系統亦無法補捉到雨量的最大值,實屬可惜。所以氣象預報並非完全有效,加上只有 1% 的機率可以達到四分之一的年均雨量,這個機率很難說服一般人馬上進行避險。

ECMWF與DWD雨量比較。圖/Luis Samaniego @twitter

這樣一次性的暴雨時期,德國遭受了超過七十億歐元的保險賠償,並有將近 200 人死亡,可見當災難超過預測時,人類的應對是遠遠不足的。同時,德國因為二戰時期與冷戰的陰影,對政府集權相當的反感,也間接導致無法使用如台灣的細胞簡訊的方法,來廣範地疏導民眾。如何增強防民眾對災難的因應意識,有可能將也是德國接下來的課題了。

在極端氣候之下,要更有防災意識

天氣之子因為對治安黑暗面的描寫,以及主角的選擇,造成了不少的爭議,也造成觀影程度與《你的名字》有所相差,雖然對筆者而言,其氣象的狀況算是超現實,且對社會重建的描寫不夠深入,但是在氣候變遷下,人們必須思考並建立對防災的概念與意識,在降雨強度變強、極端溫度更高的情況下,災難是有可能會更嚴重的。

台灣的讀者可以多參考水土保持局的相關防災宣導與資料,建立與更新相關知識,更重要的,應該是隨時有防災意識,才能保護自己,以及保護別人。

-----廣告,請繼續往下閱讀-----

參考資料

Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。