0

0
0

文字

分享

0
0
0

臺灣的雨與水

活躍星系核_96
・2011/06/03 ・2175字 ・閱讀時間約 4 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

本文作者為劉廣英博士,中國文化大學大氣科學系研究教授。

一、楔子

陽光、空氣、水是我們不可少的生命要素,其中以水的不確定性最大。有人甚至認為會發生水的戰爭(De Villiers,1999)。看到這裡,大多數的人會認為沒關係,我們雨多,不會受到波及。如果我說由於我們本身就是個缺水的國家,即使沒發生水戰,也有爭水的危機,大家也許難以接受。然而我們真的是「錢淹腳目,水不及人。」不防看看這筆帳。

二、臺灣的雨

下雨有四個條件

  1. 有水氣源:我們四面環海,且處在亞熱帶高溫區,來自海洋蒸發的水氣充足。
  2. 有凝結核:海水中的鹽份就是很好的凝結核源,我們也不缺。
  3. 上升運動:颱風、鋒面(含冷鋒與梅雨鋒)、地形、熱對流等都伴有上升運動,我們隨時都有。
  4. 厚實的雲:上述天氣系統都會帶來。

準此,我們不該缺雨,實況也確實如此。所以我們平地氣象站的年平均雨量有1900餘毫米,加上高山站後更高達2400多毫米,是世界平均值800毫米的3倍。看起來夠多。實際狀況如何?請看下面的帳。

-----廣告,請繼續往下閱讀-----

三、細算水帳-老天給我們多少水?

雨量指的是「單位面積上的水深」,所以一地之年集水量就等於「年平均雨量乘上該地區之面積」。由而可知老天爺給的雨水約950到1000億立方公尺。這些水如由我們大家平分,每人年得水量約為4300立方公尺。也就是每天約有12立方公尺水可用,這個量在世界主要工業國家中只比英、德兩國多一點。具體點說我們每天都有(2公尺乘2公尺乘3公尺)的「大水池可玩」!

然而,就水而言,由於以下原因,我們真的有不夠用的困境。

四、我們必須面對困境

困境是由三方面的問題所合成:

  • 降雨時空分配不均

由附表可見,我們的雨集中在5、6月梅雨季,以及7至9月颱風期。兩者合計累積雨量占年平均雨量的72%,也就是一年中有七成的雨下在四成之時間內。由附圖更可看到,每年的10月以後,至次年5月以前,除花東與臺北外,各地平均月雨量都在100毫米以下,中南部更不到50毫米。這也就是說,臺中以南的冬春之旱,與春耕缺水基本上是必然現象

-----廣告,請繼續往下閱讀-----

進一步看,受到冬半年盛行東北季風,夏半年盛行西南季風,與地形作用三方面的影響下,在時序上我們的雨也有季節變化。兩句話就是此特性的代表,那就是北與東部流行的「東北風雨祖宗」,與西南部的「西南風落大雨(ㄏㄡ)」。準此,除中央山脈外,我們總有一個地區有雨水不足的問題。

於是,豪大雨時我們希望水快流入大海。可是沒雨時,靠什麼?

  • 存水能力不足

降水時空分布不均就只好靠蓄水補助。然而我們的河流短而降坡大,不但沒有留住雨水的能力,而且大雨時會造成沿途與下游淹水。是以要想把五個月的雨水留住,以供全年使用,靠的就是水庫,然而我們水庫總蓄水量不到30億立方公尺,大約要滿6次方可夠一年的用量。可惜我們的降水分配達不到這個要求。於是只好抽地下水應急!當大家面對地層下陷問題時,應該會擔憂過量抽取地下水有如飲鳩止渴

於是,雨大怕淹,無雨怕旱,抽地下水怕海水入侵的困境,有如一條三頭蟒蛇隨時會纏上我們

-----廣告,請繼續往下閱讀-----
  • 暴雨增  小雨減

這筆帳的一半,也就是污染空氣造成暖化,進而改變降水型態,要怪我們自己;另一半怪大氣流動(氣象上稱大氣環流)異常。於是總雨量並沒變,但小雨日數遞減,豪大雨次數則在增加。這不但造成較多的災害,進一層的影響則是水庫淤積嚴重,讓我們的水更難留住。

五、結果與對策

以上困境不只我們會遭遇到,雨水比我們多8.4倍的美國也有「東邊淹水,西邊旱」的問題,所以我們也不必妄自菲薄,而是要正向面對大自然給我們的限制,那就是我們讓大大小小水庫能滿6次,也就是不缺水用的條件。再加上水庫淤積嚴重,蓄水能力一路下滑。影響所及就是水荒幾已是我們必須面對的常態。不過我們也用不著過度憂心,而是應該立即採取對策。

對策可分為個人與兩方面,以及一個共識問題:

  1. 自己可做的就是節約用水,最好是更進一步愛護水。前者就由日常小節入手,能省則省之。後者就是要改變「水算不得什麼」的觀念。不防想想看,我們曾經「順手」倒掉過多少水?如果那是汽油,甚或是酒,我們會「順手」倒掉否?實際上一杯水可讓人不會渴死,汽油能嗎?以小看大,如果我們每人每月能省下1.5立方公尺(大約就是5標準浴盆)的水,一年下來就可存下一座石門水庫的蓄水量。可說一點困難都沒有。
  2. 政府可做的很多,有些,如什麼樣的用水政策最妥當?水價該如何訂?以及如何可以增加蓄水能力?還需要大家的支持。另外一些,如修管堵漏與增進大水圳效益,以及提高再利用率,則是可以立即進行的事。
  3. 最後,社會大眾與政府可能必須思考如何才能增加我們的蓄水能力。無論是增建水庫,或恢復往時埤塘處處,都不是一蹴可及,應盡早啟動公共政策討論,以利早日定案並動工。

當年推動十大建設時,蔣總統經國先生曾說:「今天不做,明天會後悔。」我們不能也不該「臨渴掘井」。

-----廣告,請繼續往下閱讀-----

參考文獻

涂建翊、余嘉裕、周佳:台灣的氣候。民國九十三年,遠足出版社。
黃兆慧:台灣的水庫。民國九十一年,遠足出版社。
De Villiers, Marq,1999:Water Wars. London, Weldenfeld &Nicolson.

註:劉廣英教授人非常nice,P編兩週前冒昧地寫了封email過去,劉博士在出國之際非常快速的回信,並且允諾回國之後會再跟我連繫,簡單的電話確認邀稿後,博士於昨日將文章連圖示寄給我。在此萬分感謝劉博士。如果各位有任何問題歡迎留言討論,我會轉達給劉博士。

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
3

文字

分享

0
6
3
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

-----廣告,請繼續往下閱讀-----
 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

-----廣告,請繼續往下閱讀-----
  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

-----廣告,請繼續往下閱讀-----

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
0

文字

分享

0
4
0
SmartReading 科普閱讀力大賽——打造新世代自主閱讀指標,培養學子適性成長!第三屆頒獎典禮暨第四屆賽事啟動!
PanSci_96
・2022/09/26 ・3811字 ・閱讀時間約 7 分鐘

108 課綱開啟全新閱讀素養時代。

科學素養不再侷限於考試的解題方法,學生閱讀科學讀物時,如何在氾濫資訊中找到高品質、適合學習程度的科學素材,是教育現場至關重要的課題。

臺灣師範大學 SmartReading 團隊將 AI 讀物難度分級技術,透過測驗、選書、閱讀、讀後回饋四大功能,完整記錄孩子的學習歷程,提升中小學生科普閱讀動機,成為自律自主的科普學習者。

臺灣師範大學於 110 年至 111 年間,與國科會、新北市、臺中市等單位合作,連續辦理三屆「SmartReading 科普閱讀力大賽」,每屆競賽歷時半年。競賽組別以國小三年級至高中一年級共分七個組別。參賽學校涵蓋臺北市、新北市、臺中市、臺南市、高雄市、花東等十九縣市,報名參賽人數累計八千餘人。

國立臺灣師範大學第四屆科普賽將擴大辦理,邀請PanMedia泛科學馮瑞麒總經理、數感實驗室賴以威教授、臺大科教中心賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章。圖/國立臺灣師範大學

由系統建置適合學生閱讀的兩千多本科普讀物

競賽期間,參賽學生使用「SmartReading 適性閱讀」系統,透過精準快速的中文閱讀能力診斷,將閱讀程度與讀物難度適配。藉由系統已建置,適合國小三年級至高中一年級的 2,180 餘本科普讀物,不僅能激勵其學習動機,更可有效提升選擇的效率,降低科學閱讀恐懼。第三屆科普閱讀力大賽不受疫情波擾,採實體與線上兩種施測方式,於 111 年 5 月份圓滿完成賽事。

111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。

-----廣告,請繼續往下閱讀-----
111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。圖/國立臺灣師範大學

臺師大宋曜廷副校長表示,數位閱讀邁向新時代,團隊使用「SmartReading 適性閱讀」系統作為科普賽競賽平台,期望在知識爆炸的時代,藉由測驗、選書、規劃的「智慧閱讀三步驟」,培養學子的跨領域閱讀力與閱讀習慣,讓學生們手握知識大門的鑰匙,成為自律自主的「SmartReader」。

科普閱讀競賽的三大特色

一、適配閱讀能力與圖書難度,擴增多元書籍與文章素材

參賽學生首先須參加中文適性閱讀能力診斷(DACC),依據診斷結果,配合其當前閱讀能力的科普推薦書單,讓學生選書有依據、個人化。本競賽目前共有「推薦書單」、「推薦文章」等 2 種閱讀素材,主題包含植物/動物、數學、天文地科、物理/化學等 8 大類別。「推薦文章」功能,則與「PanSci 泛科學」及「數感實驗室 Numeracy Lab」合作評選,當前提供 600 餘篇線上科普短文,競賽期間提供已超過 4,000 人次的瀏覽次數。

二、綜合性閱讀五力分數,開啟學生全方位閱讀力

-----廣告,請繼續往下閱讀-----

本競賽賽程為期半年,學生透過「前測、閱讀任務挑戰、後測」三個階段。競賽期間,系統詳細記錄每週閱讀歷程,並產出線上「閱讀五力分數」報表。自主規劃閱讀期間計算為「規劃力」;讀後評量填答結果計算為「執行力」;閱讀多元書籍類別的結果計算為「博學力」;閱讀單一書籍類別的深化成果則計算為「精進力」;前後測成長結果計算為「成長力」。將閱讀能力數據化、可視化。

三、閱讀任務徽章,深化學生文化素養與科普閱讀興趣

本競賽內建徽章蒐集系統,參賽者於指定時間依據提示完成閱讀任務,即可獲得期間限定的特色科普徽章。任務內容包含閱讀指定的書單及文章類別、世界性科普節日、科學家生辰、台灣重要節慶與其他隱藏任務。本屆各年級累計獲得徽章達 20423 枚,因設計活潑及任務類型多樣,大受參賽者好評。

競賽結果發現學生的閱讀偏好

一、科普閱讀參與,國小男性最踴躍

-----廣告,請繼續往下閱讀-----

活動期間參賽者共完成約 21,153 本的書籍評量。以不同學習階段來看;國小參賽者整體閱讀平均本數為 24 本,男生平均閱讀本數為 28 本,女生平均閱讀本數為 20 本。國、高中參賽者因科普讀本難度較高,需要較長的閱讀時間及一定的科學基礎知識,國中參賽者整體平均閱讀書籍數為 10 本;高中參賽者中女性平均閱讀本數多於男性,整體平均閱讀書籍數為 7 本。

總閱讀量/本人數平均閱讀量/本
全體學生21,1531,10019
8,05150516
13,10259522
國小學生17,47971624
6,47432520
11,00539128
國中學生3,45935510
1,4611669
1,99818911
高中學生215297
116148
99157
活動期間參賽者共完成約 21,153 本的書籍評量。表/國立臺灣師範大學

二、學生偏好閱讀動物/寵物類與地球生態/天文類書籍

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類(男生 28.19%、女生 27.91%)最能引起學生的閱讀興趣(如:《昆蟲老師上課了!:吳沁婕的超級生物課》、《小島上的貓頭鷹》、《神奇樹屋》等系列)。在次要類別,男女皆喜好生態/生命科學類的書籍(男生 15.20%、女生 16.87%)。

整體參賽學生對於科普書籍的喜愛程度,以植物/動物類最能引起學生的閱讀興趣。在次要類別,男女皆喜好生態/生命科學類的書籍。圖/國立臺灣師範大學

三、參賽學生閱讀歷程的質與量均佳,表現令人驚豔

-----廣告,請繼續往下閱讀-----

本次參賽學生皆積極參與競賽。

以三年級組第一名得主,臺北市立大同國小的林靖軒同學為例,競賽期間閱讀書籍本數高達 383 本,書籍讀後評量的通過率更高達 95%,書籍不僅讀得多,更是能讀得要領。

四年級組第一名為第二次參賽的新北市信義國小謝秉言同學,本次競賽期間共閱讀 427 本書。

其中五年級組為本次競爭最激烈的一組,臺北市立長春國小的黃葦川同學以及高雄市立集美國小的吳勁毅同學,兩者僅以極小的分數差距位居第一及第二名。

-----廣告,請繼續往下閱讀-----

此外,第一次參與競賽的高雄市立正義國小的孫政遠,競賽期間閱讀 281 本書籍,通過率達到 97%。

四、教育主管機關、學校師長及家長支持鼓勵,帶動學生優異表現

新北市教育局致力於推動智慧閱讀教育,不遺餘力,成果豐碩。本屆競賽全台共 2,104 人報名參與,全國賽獎項獲獎學生共計 36 人,其中新北市得獎學生便囊括 14 位,表現相當亮眼。

家長與學校師長共同陪伴,使得學生能專注於本次競賽,並有相當卓越的成果,例如新北市康橋國際學校、臺中市明道中學、臺中市葳格國際學校、臺北市東山中學等校,皆因全力推廣閱讀活動,才能有優異的競賽成果。以新北市康橋國際學校國中部為例,此次七年級組參賽者,全國賽前5名得主中,康橋中學就獲有 3 名的佳績。

-----廣告,請繼續往下閱讀-----
臺師大華語文與科技研究中心洪嘉馡教授說明第三屆科普閱讀力大賽成果。圖/國立臺灣師範大學

第四屆科普閱讀力大賽即將開跑

延續前三屆廣受好評之科普賽事,第四屆科普賽將擴大辦理,邀請「PanMedia 泛科知識股份有限公司」馮瑞麒總經理、「數感實驗室 Numeracy Lab」賴以威教授、「國立臺灣大學科學教育發展中心」賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章,預期第四屆科普閱讀力大賽將能讓全球讀者有更高品質的閱讀體驗和更充實的閱讀收穫。

活動詳情請參閱官方網站
新聞聯絡人:高等教育深耕計畫辦公室——鄭德蓉 02-2366-0916 #111

-----廣告,請繼續往下閱讀-----