2

7
0

文字

分享

2
7
0

過了這次乾旱還有下次!臺灣不容樂觀的水資源困境──專訪許晃雄

研之有物│中央研究院_96
・2021/07/12 ・4976字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|陳亭瑋
  • 美術設計|林洵安

臺灣在 2021 前半年面臨嚴重的乾旱,中南部水情見紅,讓在地居民相當憂心。這次乾旱是否就是氣候變遷的結果?中研院環境變遷研究中心許晃雄特聘研究員指出,氣候系統極端複雜,不宜驟下結論。那麼,科學家是如何評估氣候的?首先需要處理複雜運算的「地球模擬器」,而許晃雄就是「臺灣地球系統模式」的主要推動者。如何用氣候模式看待乾旱?透過研之有物專訪一起瞭解。

「長期來看,未來下雨的情況,臺灣的水資源、自然災害的情況都容不樂觀。」許晃雄認為,依據氣候變遷推估的情境,雖然本次為號稱百年一遇的大旱,但未來類似的旱象極可能更加頻繁。圖/研之有物

未來還會有乾旱嗎?

佇立在桃園石門水庫的土地公廟與酋長石,隨著枯水期蓄水吃緊,奇景完整浮現在遊客面前;旱象之下日月潭持續乾涸,手機、車牌、乾隆年間的墓碑以及邵族沉沒的大型獨木舟也陸續在潭底被尋獲。

2021 前半年,臺灣遭遇號稱百年最大乾旱,中南部連續「好天氣」未有降水。事情要回到深受疫情影響的前一年,2020 的初夏梅雨少落,夏秋颱風罕見地過門不入,翻年受高壓影響春雨只走了個乾巴巴的過場。解除旱象始終要看老天爺的臉色,而推估未來的氣候走向,則是中央研究院「環境變遷研究中心人為氣候變遷專題中心」的核心任務。

「長期來看,未來下雨的情況,臺灣的水資源、自然災害的情況都容不樂觀。」中研院環境變遷研究中心特聘研究員許晃雄認為,依據氣候變遷推估的情境,雖然本次為號稱百年一遇的大旱,但未來類似的旱象極可能更加頻繁。今年的旱象應該視為水資源管理的重要警訊,提醒臺灣全體及早為了氣候變遷做出適當的因應。

規劃因應對策之前,首先當然需要了解在氣候變遷的情境下,臺灣的氣候將面臨哪些變異與變遷。自 2010 年起,以中央研究院環境變遷研究中心為核心,在科技部的支助與中研院的支援下,聚集臺灣多所大學的研究人員,組成了「氣候變遷研究聯盟」,以建立臺灣氣候變遷模擬與詮釋所需的關鍵能力。除了自行研發改進「氣候模式系統」,也利用此模式研判氣候變遷與極端天氣未來將帶來的衝擊。

科學家如何「算計」氣候系統?

氣候模式是什麼?又如何估算未來氣候狀況呢?

「(氣候模式系統)有點像是用電腦語言建一個『地球模擬器』,電腦基本上可以模擬我們觀測到的現象,比如說大氣、環流、海洋、水循環、雲。」許晃雄說明,透過將地球在水平方向切割成數萬個網格(每格約 60~100 公里)與垂直方向數十層,就可用超級電腦進行模擬、計算出每個網格的氣候狀況。

許晃雄表示,全世界目前有約 40~50 個「地球模擬器」,但還沒有公認模擬或推估能力最完善者,各單位的成果各有長處與短板。現階段如聯合國政府間氣候變遷專門委員會(Intergovernmental Panel on Climate Change, IPCC)撰寫氣候變遷評估報告的時候,通常會採用類似「多數決」,同時使用多個模式,以多模式模擬和系集模擬(ensemble simulation),獲得重要的預估資料。

現有的諸多氣候系統模式均投入了許多科學家的努力,但離完美模擬還有很長的一段路要走。由地球科學的角度來說,地球可以被分成大氣、冰雪、水、陸地、生物等五項子系統,這五項系統的交互作用,都會影響地球的氣候。因此考慮這些子系統間相互影響的物理過程,根據物理、熱力、化學定律組成的方程式,編寫成電腦程式,就可以在超級電腦上模擬大氣、陸地、海洋隨時間的變化。但是,全球氣候模式的解析度仍不夠精細,每格網格大小為數十到百公里,在此一尺度上,無法處理較小尺度、但極重要的物理過程(如大氣輻射、對流、氣膠、雲等),都需要將之以參數簡化,這也造成不夠精確的氣候模擬結果。

「像是在原本的氣候模式裡面,很難定義『一朵雲』。」

許晃雄說明,區域天氣中很重要的雲朵、地形輻射等因素,在原本的參數裡都難以精準呈現。而這也是許多科學家持續努力的目標,在此,臺灣的研究團隊自然也沒有缺席。

臺灣「氣候變遷研究聯盟」團隊在有限的人力物力之下發展「臺灣地球系統模式」(Taiwan Earth System Model,TaiESM,解析度約 100 公里, 無法模擬颱風),以既有的美國國家大氣研究中心「社群地球系統模式」(CESM1)與美國海洋與大氣地球物理動力實驗室「高解析大氣模式」(HiRAM,解析度約 25 公里, 可以解析颱風)為基礎,再納入臺灣特有研究專長的模組,改善大氣物理參數化,以及海洋模組的調整。

舉例來說,TaiESM 的特色之一,即是納入臺大大氣科學系自行研發的「雲與氣膠」模組,在運算中大幅改善了對於氣膠與雲的微物理交互作用的模擬能力;還有中研院環變中心的三維地形對太陽輻射的吸收,雲量的模擬與對流的啟動機制;此外關於海洋模組,中興大學發展出「海氣交互作用」模組,對於一維雪、冰、海洋模組有極高的解析度,並且耦合全球大氣模式後,可以成功呈現許多氣候模式都無法恰當模擬的熱帶「季內振盪」(Intraseasonal Oscillation,ISO),其對於全球天氣氣候影響僅次於聖嬰現象。

氣候模式系統有點像是用電腦語言建一個「地球模擬器」,模擬我們觀測到的現象。氣候模式系統會將地球在水平方向切割成數萬個網格(每格約 60~100 公里)與垂直方向數十層,因此模擬所需計算量龐大,需要用超級電腦計算出每個網格的氣候狀況。圖/研之有物

許晃雄分享,雖然「臺灣地球系統模式」建置的研究人力與資源遠不如國外相關的團隊,但已在短短的十年間獲得不錯的成果。近年已經加入世界氣象組織轄下世界氣候研究計畫中的「耦合模式比對計畫」(Coupled Model Intercomparison Project,CMIP)第六期計劃,臺灣成為少數有能力模擬與推估長期氣候變遷的國家,並且將貢獻相關成果給全世界。TaiESM 還有不少需要改進的地方,但是與全球數十多個模式評比發現,TaiESM 模擬現代氣候的表現與全球領先的地球系統模式相比,並不遜色。

複雜就是臺灣氣候系統的特色

當然,人為氣候變遷專題中心研究團隊也被大眾期待要處理在地議題,而模擬臺灣附近的氣候系統,本身難度就較世界其他地方高一截。「臺灣屬於亞洲季風區,全世界的季風區中,最複雜的地方。在這個區域中,有多重尺度的交互作用必須要同時處理。」許晃雄說明。

臺灣的天氣氣候深受颱風跟季風的影響,但這兩者有尺度上有一定的差異,但彼此間又會有複雜的交互作用。颱風本身會影響大尺度的環流,從而影響季風系統;反之季風系統的情況,本身也會影響颱風的生成。臺灣剛好位在歐亞大陸與太平洋的交會點,海陸分布很複雜,處於多個系統的交會點,也就很容易受到遠方的氣候因子影響。

如今年的旱象,起源自去年度氣溫較高,太平洋副熱帶高壓強,海面上生成的颱風弱而生命期短;也有研究指出,去年度印度洋海溫破紀錄,的確有可能會影響太平洋颱風生成;而在氣候變遷的情境下,印度洋的確是海溫升高速度最快的洋盆……此間的關係錯綜。許晃雄提醒,氣候系統極端複雜,雖然有些現象與推估類似,但原因不同,不宜貿下結論認為本次的臺灣大旱都是由氣候變遷所導致。

「大氣是連續的,臺灣(的天氣)會受到外面季風、氣候變化的影響。」既然無法自外於世界的變化,那就要盡力打造自身的研究能力。而未來的終極發展方向,將朝著「無接縫天氣氣候預報系統」持續發展,打破傳統將大氣現象依據時間空間尺度區分的概念,這就是氣候模擬與推估研究的終極目標。

乾旱與高溫:氣候變遷對臺灣的衝擊

有了所需的研究工具,面臨無可避免的氣候變遷趨勢,臺灣將會遭遇哪些高風險狀況呢?

首先當然還是跟民生息息相關的降雨變化。環境變遷研究中心結合科技部「臺灣氣候變遷推估資訊與調適知識平台(TCCIP)」計畫合作,在中研院永續科學中心的支助下,2018 年完成的研究「臺灣乾旱研究:變遷、水資源衝擊、風險認知與溝通計畫」在結果中就指出,北臺灣未來(2040 – 2060)春季乾旱可能會變得更嚴重,民生與農業用缺水率會顯著增加。

TCCIP 研究推估臺灣未來的降水變遷,也發現降水時期的不平均會更極端,枯水期越乾,豐水期越濕;枯水期不下雨的天數增加,乾旱時間可能延長;而豐水期則降雨強度變大,面臨豪雨或暴雨更嚴重的狀況,反而可能加劇淹水與土石流的威脅,對於蓄水設備(如水庫淤積)造成更大的負擔。

「臺灣的乾旱通常不是特別嚴重,通常是幾個月就過去了,跟澳洲美國那種大陸型乾旱不一樣。」對於大家容易遺忘水情常岌岌可危,許晃雄舉例,2002 – 2004 年就斷斷續續有過旱災,連大臺北地區都經歷分區供水。但由於災情通常能在梅雨季或颱風季獲得緩解,旱象少有超過一年,也因此較不容易留在大家的記憶中,珍惜水資源的意識也因此較為薄弱。

但實際上,臺灣特殊的地理環境導致雖然降雨不少,但水資源管理相對辛苦,以石門水庫為例,每年至少要補充四次。研究也指出,臺灣 2 到 4 月的春雨往往是第一期稻作重要的灌溉水來源,因此春雨期間降雨的多寡,攸關當年度的水情與農作。前述研究的氣候模擬顯示,臺灣在世紀中春雨的降雨量預估將減少 13.2%,連續乾日會增加 55.7%,北臺灣未來的乾旱情況可能會更加嚴重。

另一個臺灣很可能面臨的氣候變遷情境,是高溫

相關研究均指出,臺灣未來平均氣溫的升高是無法避免的。過去百年間,臺灣的氣候已經由冬天長夏天短逐漸轉變為夏天長冬天短,推估未來夏季可以長達 150 天,「熱浪不會是很多個斷斷續續來,會是只有一個,以現在的標準,未來整個夏季都是熱浪。」許晃雄描述臺灣將進入「炙熱的世界」。

根據許晃雄先前的氣候模擬報告顯示,臺灣在世紀中春雨的降雨量預估將減少 13.2%,連續乾日會增加 55.7%,北臺灣未來的乾旱情況可能會更加嚴重。圖/研之有物

先充分了解衝擊,再進行調適策略規劃

氣候變遷已迫在眉睫,那麼我們該如何對此做出因應?

許晃雄表示,現階段應該盡快完成有關氣候變遷衝擊影響的研究,才適合進一步研擬調適策略。氣候變遷影響的層面非常廣泛,對於環境、農林漁牧、公共衛生、健康、生態等領域,都很可能造成明顯衝擊。但現階段對於這領域相關研究內容仍不夠充足,對於「衝擊」沒有充分的認知,就貿然進行「調適」的規劃,恐將事倍功半。

舉例來說,之前環境變遷研究中心「乾旱研究」即已指出,未來臺灣北部主要集水區的雨量在春季減少得最為明顯,因此受氣候變遷影響,直到世紀中,北部的缺水率最多將超過 20%,甚至北部農業用水的缺水率可能超過 40%。如此的衝擊認知仍然較為粗略,更詳細來說,在缺水情境下,哪些領域將受到最嚴重的衝擊,都還需要更細緻的研究。

「以前在(氣候變遷)討論的內容是自然科學,現在討論的方向,已經滲透到人類生活每個層面裡面去,這個是相當不同的地方。」

曾於 1997 年與魏國彥教授合著出版《全球環境變遷導論》的許晃雄浸淫在此議題中幾十年,他表示氣候變遷議題,已經廣泛到影響所有人,所有人都應當參與。關心相關議題不需要拘泥於科系領域,不管是數理化、工程、生物、健康、環境、經濟、社會科學,只要學有專精皆有可發揮之處。在不久的未來,我們必須要在各方面技術上與制度上有突破性的進展,在節能減碳的同時,也能因應氣候變遷帶來的衝擊。

氣候變遷的議題廣泛而影響深遠,將帶來許多衝擊改變。但若能及早因應面對,臺灣未嘗不能透過各種新發展化危機為轉機。

延伸閱讀

文章難易度
所有討論 2
研之有物│中央研究院_96
285 篇文章 ・ 2902 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

3
2

文字

分享

1
3
2
擺脫缺水危機:四面環海的台灣,有可能好好利用我們身邊的海水嗎?
PanSci_96
・2023/06/24 ・3755字 ・閱讀時間約 7 分鐘

這幾年颱風都不颱風了,彷彿被台灣本島的 AT 力場隔阻在外,總是甩尾或擦邊而過,雖然少了可能的災情,但也讓台灣面對嚴峻的缺水問題,尤其曾文水庫持續探底,南部的水情特別不樂觀。如果冬、春季的鋒面也無法帶來雨量,無疑是雪上加霜,啊不對,連雨都沒有,哪來的雪跟霜呢?

那麼除了積極人工造雨、開發伏流水以外,你或許也想過,既然台灣四面都是取之不盡的海水,為什麼我們不能好好利用呢?實際上,澎湖早在 1993 年就建造了國內第一座海水淡化廠,為何至今海水淡化卻還沒有普及呢?我們有機會透過海水淡化,永永遠遠擺脫缺水危機嗎?

海水淡化效率如何?能源消耗是重要的考量因素

實際上,要將海水淡化也不需要什麼先進科技,只要將水分蒸發,再蒐集水蒸氣使它們凝結成水就可以了。曬乾後的海水還會留下天然的海鹽,可以說是一舉兩得。

這種加熱蒸餾法唯一的問題就是:效率實在是不太好。水的特性之一就是沸騰時會消耗大量的能量。要將一鍋一百度的水燒乾所需的能量,已經可以將五鍋水從零度加熱到一百度。不只如此,要讓水蒸氣凝結成液態水的過程,同樣需要耗費許多能量來進行冷卻。總的來說,這種將水變成水蒸氣再變回來的蒸餾法,從能量效率的角度來看相當不划算。很難規模化量產淡水。

想要淡化海水,能源消耗是很重要的考量因素。如果要用化石燃料或電能來大量蒸餾海水,對大多數國家來說是筆相當沉重的開銷。在還沒解決用水問題前就先陷入能源危機了。因此,目前各國的大型海水淡化廠都不採用加熱蒸餾法。而是使用大家很常聽到的「逆滲透」。

逆滲透顧名思義,就是逆向的滲透作用。這是什麼意思呢?如果杯子中同時存在鹽水和淡水,中間用一片只有水分子能通過的特殊半透膜隔開,這時候水就就會自己穿過半透膜移向較鹹的那側。這種「驅使水分從低濃度前往高濃度區域的現象」就稱為「滲透」。

半透膜上的滲透過程。此過程中,水分會從溶質(藍色點點)濃度較低的區域網濃度較高的區域移動。圖/維基百科

雖然眼睛看不見,但滲透卻會產生一種真實的壓力——滲透壓,滲透壓足以和重力抗衡,在半透膜兩側形成一高一低的水位。但是我們海水淡化是要將海水變成淡水。所以反過來想,我們將鹹水放在高濃度這一側,並且用力推,推贏了水的滲透壓,水份就會逆流到淡水那邊,這就是逆滲透。

決定逆滲透效率的一個重要因素,就是逆滲透膜的材質。目前而言,不論是海水淡化廠還是你家廚房的飲水機,大都是用一種叫做芳香族聚醯胺的材質,做為逆滲透膜來進行淨水。這種材料的出現讓逆滲透的濾水效率大幅提升,只要花費蒸餾法十分之一的能量就可以得到等量的淡水。這讓逆滲透法擊敗了其他競爭者,成為最普遍也最容易規模化的淨水模式。

賠本生意沒人做:脫穎而出的「逆滲透」技術,仍然無法擺脫可觀的成本

雖然這樣說,可是想要用高壓逆滲透來淡化海水還是要付出非常可觀的能量。首先,海水中可不是只有鹽份,還有各式各樣的懸浮物,金屬離子與微生物。如果不先去除這些雜質,逆滲透膜上給水分子通過的微小孔洞,很快便會堵塞。因此海水得先通過一系列的過濾與處理,才能真正進入逆滲透處理。

而且隨著逆滲透產出淡水,剩餘海水的鹹度也會逐漸變高,需要更大的壓力才能對抗持續增加的滲透壓。也就是說,要將所有抽上來的海水淡化在實務上是不可能的。一般而言,最後會剩下重量約一半的海水,這些濃縮海水鹹度特別高,被稱為鹵水。這些鹵水最後還要再透過管線排回海洋中。

講到這邊,我們已經能解答開頭提出的問題,為什麼海水淡化沒有普及?為何不用海水淡化來永久擺脫缺水?答案就是成本與自來水價差太多了。逆滲透淡化的程序相當繁複,而且每個環節都要耗電。不僅浪費能源,成本也超高,根據水利署資料,台灣海水淡化的平均成本約為一度30~40元,遠高於台灣的平均家戶水價每度 9.24 元,當然沒有自來水公司願意做這種賠本生意。

沒有其他壓低成本的方法嗎?

台灣的水價真的很低,是國際水協會調查33個國家中的第四低,這也是海水淡化發展的瓶頸。但如果先撇除水價問題,我們能不能找到不同於逆滲透的新方法,進一步壓低海水淡化的成本呢?

神奇的抽水小艇

全球各地有許多勇於探索的研究團隊,持續在尋找全新的海水淡化技術。這些技術以永續發展為目標,利用再生能源或是新穎材料來產出淡水資源。

例如加拿大的新創公司 Oneka 便想到,既然主要的目標是海水,就不要浪費力氣把海水抽上岸了,直接把逆滲透機組打造成像是救生小艇一樣的形狀,漂浮在海面上。更神奇的是,這些小艇竟然完全不需要用電!

只要你懂海,海就會幫你!原來,Oneka 的逆滲透機組直接以海浪作為能量來源。這些小艇以纜線固定在海床上。當浪頭上升時,便提供了逆滲透所需的水壓。可以說是百分之百取之於海洋,發揮海洋的力量。淨化完成的淡水,則可以直接透過海底管線流向岸邊的集水裝置。

Oneka 公司的海水淡化技術。圖/Onekawater

Oneka 已經與智利中部海岸的海濱小鎮阿爾加羅沃合作,在碼頭安裝了這些小艇,每台小艇每天最多可以提供1500人的日常用水。依照此規模,只要在岸邊布置十餘台小艇,就足以供應一個小型海濱社區達成「用水自由」。

廢「熱」再利用

除了逆滲透之外,也有人回過頭,嘗試重新開發新型態的蒸餾法來淡化海水。雖然蒸餾法需要耗費很多能量,但如果這些是本來就不用白不用的熱能,像是太陽能或發電廠的廢熱呢?這些廢熱,除了可以用在我們先前提到過廢熱發電,也能用在蒸餾,而且由於蒸餾法的構造和原理相對簡單,在一些小規模的應用中反而具有成本上的優勢。

這種獨特的設計每天每平方公尺可以蒸餾出 10 ~ 20 公升的淡水,雖然量聽起來不多,但是體積小且效率高,可以將家庭廢水作為再生水再次使用,對缺水地區的家庭與社區是實用的解方。

仿生材料「類澱粉蛋白」

除了有效利用各種再生能源來進行逆滲透或蒸餾,有一組來自台灣的研究團隊在今年初提出了一種全新的做法。陽明交大生命科學暨基因體科學研究所的許世宜教授發現,水珠在某種特別的仿生材料上會自動往某個方向擴散,等於是一個不用插電的奈米級抽水馬達。

他們所研究的這種材料叫做類澱粉蛋白,沒錯,就是會卡在腦血管中,造成阿茲海默症的元兇。研究團隊發現,在許多類澱粉蛋白排列成的薄膜上,表面能量會出現獨特的不對稱鋸齒形狀,引導水分子往單一方向移動。只要用這種薄膜製造一個奈米吸管,水分子便會自動由一側流往另一側。

雖然這份研究目前是以奈米尺度的電腦模擬進行,離規模化和商業化還有一段長路,不過研究團隊估計,一片10公分見方的類澱粉蛋白膜不需要輸入能量,就可以在一天內產出 2.5 噸的淡水,且只要額外施加小小的 5 大氣壓,就可以將產量提升到每天 3.6 公噸。單位面積產水量是傳統逆滲透的兩百倍,所需壓力也小很多,非常有潛力成為未來低耗能、高產量的海水淡化方案。

面對常見的缺水問題,台灣現在能做什麼?

僅管最近有這麼多令人期待的新技術,但是台灣的水情或許沒辦法等到這些技術發展成熟來進駐。老字號的逆滲透海水淡化廠依然是補充匱乏水資源的重要方案。台灣國內其實早就有多座海水淡化廠,不過主要集中於離島。目前水利署已經開始推動在本島六縣市興建大型海水淡化廠,目標是每個廠每日都能產出 5~20 萬噸的淡水。

至於耗電問題,根據水利署相關單位在環評會議中的說明,除了搭配光電與能源回收設施之外,海水淡化會發生在 10 月到隔年 5 月的枯水期,盡量與用電高峰的夏季隔開,降低電能負載。

除了耗能之外,還有一點需要注意,就是海淡廠排放的高鹽度鹵水,是否會對周圍環境與生態造成影響。雖然目前透過電腦模擬鹵水排放,結果發現附近海域鹽度增量僅有 3~4%,影響看起來並不明顯。未來對生態與用電是否造成衝擊,還需要持續觀察。

最後,就如同我們前面講到的,海水淡化是否能普及這個問題,除了技術是否到位外,還有一個關鍵問題值得我們討論,那就是台灣的水費,是否真的太低了?

台灣的水價定位問題值得討論。圖/envatoelements

很多人都知道台灣每年每人可分配的降雨量,僅有世界平均的五分之一,位列全球排名第 18 的缺水國家。然而,我們的水費卻是世界第四低。相比跟我們一樣是島國且水資源不足的日本與新加坡,它們的水價約為一度 30 元和 37 元,是我們一度 9.24 元的三倍以上。而這個價錢,與海水淡化目前 30~40 元的成本相比,就會讓海水淡化顯得可以接受。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1189 篇文章 ・ 1740 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
2

文字

分享

0
5
2
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
150 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

11
4

文字

分享

0
11
4
IPCC最新氣候變遷報告說了什麼?更熱的地球與更脆弱的人類
台灣科技媒體中心_96
・2022/03/03 ・3926字 ・閱讀時間約 8 分鐘

氣候變遷衝擊面向更廣,台灣準備好了嗎?

正當全球關注俄羅斯與烏克蘭的戰事發展時,昨(2/28)日聯合國氣候變遷專門委員會(IPCC)發布了最新氣候變遷第六次評估報告第二冊《衝擊、調適與脆弱度》(AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability),再次呼籲各界積極應對氣候變遷衝擊,並立即展開應對政策與調適行動。

該重量級報告指出,人類活動引起的氣候變遷現象,已在世界各地造成極大負面衝擊與不可逆的環境危機,危及大量的陸地與海洋物種生存,目前已有多達 33~36 億人口生存在易受氣候變遷衝擊的脆弱環境中,且氣候變遷影響不僅止於生態物種,更危及人類社會的糧食、水資源、都市及健康問題。

台灣多位專家隨之呼籲,許多過去未被注意到的風險,如心理健康、土木工程都可能遭受衝擊,台灣應重新盤點、反思各領域可能的衝擊與調適策略,以因應不斷變動的氣候變遷衝擊。近年當紅的「自然解決方案(Nature-based Solutions, NbS)」,也首次被納入 IPCC 科學報告,值得相關當局關注。

為協助台灣社會掌握最新氣候發展脈動,台灣科技媒體中心偕同財團法人台達電子文教基金會,於報告發表隔日公開本次報告完整的決策者摘要(SPM)中文翻譯,以及台灣專家回應觀點,協助相關單位制訂更適切的氣候變遷調適策略。

這份重量級報告指出,人類引起的氣候變遷,已在世界各地造成極大負面衝擊與不可逆的環境危機。圖/envato elements

第六次報告強調的重點為何?

台灣科技媒體中心舉辦記者會,邀請台灣大學生物環境系統工程學系教授童慶斌、中央大學水文與海洋科學研究所教授李明旭、銘傳大學都市規劃與防災學系副教授石婉瑜解析這份重量級報告。這份報告是整個第六次評估報告(AR6)中的第二份,關注氣候變遷造成的衝擊、風險與人類的調適發展。

IPCC 再次呼籲,應對日益增加的氣候變遷風險應即時行動。相較於第五次評估報告,本次更強調,只要升溫超過攝氏 1.5 度,對生態或是人類系統的風險將大幅升高;而且升溫越多,人類將越無法調適。

童慶斌回應報告提到的風險,指出我們應該找出具有一致性與標準性的國家評估方法、建立可靠的科學證據;並根據 AR6 氣候情境,來評估台灣未來氣候變遷下的危害地圖,才能依此做出好的調適。同時標準化的評估方法,有助於不同層級、部門一起協力,建立夥伴關係,應對個別部門很難單一處理的跨領域風險。進一步形成跨部會、跨層級的公私協力夥伴關係,並考量永續發展目標。

童慶斌也提醒「衝擊與調適」在不同部門之間可能互斥,也可能互利。例如農業部門、民生部門、工業部門都會同時面對缺水問題,目前遇到這個問題,台灣是將農業用水調給民生工業部門,但這會與糧食安全互斥。另一面向,當我們面對淹水的問題,處理好淹水也會同時減少病媒蚊滋生的環境,與公共衛生領域共利。

李明旭則指出,這次報告與第五次評估報告的最大差異,是強調全球暖化超過攝氏 1.5 度將產生的額外嚴酷風險。報告特別提醒調適與減緩之間,需要更好的權衡,並避免導致「不適當的調適」,而不適當的調適可能在解決一個氣候風險問題之後,產生新的衝擊問題,甚至進入高脆弱度、暴露與風險的困境。

這次報告強調全球暖化超過攝氏 1.5 度將產生的額外嚴酷風險。圖/envato elements

6個氣候變遷即將帶來的衝擊

1. 從氣候變遷觀察到的衝擊:

人為引起的氣候變遷,包括更頻繁、劇烈的極端天氣事件,對自然和人類造成廣泛的負面影響,且其造成的衝擊,可能超過人類與自然可調適的範圍。

a.     生態方面

全球評估大約一半的物種已經向極地或更高海拔的地區移動。極端高溫造成數以百計的物種損失,以及陸地及海洋大規模生物死亡的事件。有些生態損失是不可逆的,例如已滅絕的物種;有些衝擊接近不可逆的狀態,例如冰河退縮導致的水文變化。

b.    人類社會

(a)  糧食與水的安全首當其衝。中低緯度地區受到較大的負面衝擊,致使數百萬人面臨嚴重糧食不安全。水產養殖與漁業也受到負面影響。

(b)  人類身體與心理健康的不利影響。例如:極端高溫導致人類死亡、提升發病率;擴大病媒蚊傳播範圍;極端天氣事件造成心理創傷等。

(c)   在城市中,主要的衝擊集中在經濟與社會弱勢的居民。此外關鍵基礎設施,如交通、水、能源系統,也正在受到極端天氣事件的影響。

報告中觀察到,全球評估大約一半的物種已經向極地或更高海拔的地區移動。圖/envato elements

2. 生態系統與人類的脆弱度和暴露:

a.     生態

全球僅不到 15% 的土地、21% 的淡水、8% 的海洋屬於保護區,且多數保護區缺乏降低氣候變遷影響的管理制度。預計世界上大部分的森林、珊瑚礁和低窪沿海地區,會受氣候影響而退化或損失。

b.    人類社會

大約 33-36 億人生活在極易受到氣候變遷影響的環境中。西非、中非、東非、南亞、中南美洲、小島嶼國家、北極地區是人類高度脆弱的熱點。

大約 33-36 億人生活在極易受到氣候變遷影響的環境中。圖/envato elements

3. 近期(2021-2040)風險:

在近期全球升溫就可能達攝氏 1.5 度,將會造成多種氣候災害增加。在近期自然和人類系統的氣候風險,取決於脆弱度與暴露程度,而非排放情境。與暖化加劇的情境相比,將升溫限制在1.5度可以大幅減少自然和人類的損失,但不能完全消除。

4. 中長期(2041-2100)風險:

2040 年後,氣候變遷的風險與全球暖化的程度高度相關。

a.     生態

估計在全球升溫攝氏 1.5-2 度間,生物多樣性熱點地區的特有物種的滅絕風險至少翻倍;如果升溫幅度為攝氏 1.5-3 度,則至少增加 10 倍。

b.    人類社會

在中長期所有評估中,暖化程度越高,可使用的水資源風險及水有關的危害程度越大;糧食生產和取得的壓力增加;熱浪的暴露人口持續增加;城市、關鍵基礎設施的風險增加,預計如果全球平均海平面相較於 2020 年上升 0.15 公尺,遭受百年一遇洪災的人口會增加 20%。

5. 氣候變遷的衝擊與風險越來越複雜、越來越難以管理。

多種氣候災害同時發生,且氣候與非氣候的風險交互作用,將導致新的衝擊與風險。

6. 暫時超出攝氏 1.5 度的風險:

目前的推估模型對於這個路徑的評估有限。但暫時超過攝氏 1.5 度仍會造成部分低恢復力的生態系統,如極地、山區、沿海生態系不可逆的影響。

我們該如何提高氣候韌性?

報告中,針對氣候韌性提出四大重點:

  1. 各個國家地區基於資源、脆弱度、文化價值的差異,選擇不同的排放情境,導致實現氣候韌性發展的機會之窗正在迅速縮小。
  2. 當政府、民間社會和私部門做出以減少風險、公平和正義為優先的發展選擇,且決策過程與資金都有跨部門的合作,最可能實現氣候韌性發展。
  3. 鑑於氣候變遷對生態系統與生物多樣性的威脅,保護生物多樣性與生態系統,是發展氣候韌性的基礎。
  4. 毫無疑問,氣候變遷已經擾亂自然與人類系統。未來十年採取的社會選擇與行動,決定了在中長期路徑上氣候韌性的高低。重要的是,如果當前不迅速減少溫室氣體排放,特別當升溫超過攝氏1.5度,氣候韌性發展的前景,將會越來越有限。

李明旭認為,這份報告不斷提到「包容式的治理過程」,強調資訊公開、決策透明。同時需建立夥伴關係、減少調適的軟性限制,透過政策工具與組織制度,建立促進調適發展的重要基礎。同時這次的報告強調「未來十年,人類的行動將會決定未來我們要面對多少風險」,且與 2030 永續發展的目標緊密扣連。

石婉瑜提到與過去相比,AR6 採用新的框架評估與討論氣候風險。從人類社會、自然生態與氣候,三個系統的依存關係與交互作用,尋求達成氣候韌性的方法。石婉瑜指出,傳統的系統經常造成「不永續」與「氣候變遷」,因此這份報告強調人類與生態系統的永續、公正轉型,以及各種系統的創新轉變。

圖/envato elements

石婉瑜強調都市化是全球的趨勢,全球大部分的人口居住在都市中,而越來越多的城市暴露在高氣候風險之下,因此「城市」的氣候科學與調適已經是 IPCC 的關注焦點。石婉瑜認為報告中所指不當調適、災害風險不均、氣候正義問題,值得決策者重視,且須納入各類知識與族群參與規劃。此外以生態系統為基礎的「自然解方」,首次被納入 IPCC 報告的城市調適策略,未來台灣規劃調適策略與氣候韌性路徑時,也應列為核心考量。

延伸閱讀

台灣科技媒體中心_96
46 篇文章 ・ 326 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。