網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

5

0
1

文字

分享

5
0
1

黑色的植物,真的存在在地球上!

葉綠舒
・2011/05/28 ・1644字 ・閱讀時間約 3 分鐘 ・SR值 458 ・五年級

今天看到PanSci網站有篇文章提到:如果真有星球兩個太陽,那個星球上面的植物可能是黑的。我仔細看了一下文章,其實裡面提到的黑色的植物應該不是存在於有「兩個太陽」的行星上,而是在以紅矮星為太陽的行星上。

不過,由於我本身是多肉植物的愛好者,仙肉迷們應該都知道多肉植物的型態多變,顏色也變化很大,但有趣的是,有一屬的多肉(Sinocrassula)大多是深色的,而且其中被稱為四馬路/泗馬露(Sinocrassula yunnanensis)的這種多肉,竟然真的是黑的。

Sinocrassula yunnanensis

究竟這種黑色的植物跟光合作用的適應有沒有關係呢?說真的我也不知道,不過Sinocrassula的原產地在中國雲南及緬甸北部,而且是位於海拔2500-2700m左右的高山上喔!高山上應該輻射是比較強,是否為了怕曬傷所以演化出黑色(或深色)的外觀?老葉是有點想要研究看看,不過四馬路實在有點貴,在多肉界算是比較高價位的植物(上面那株是種在兩吋盆裡,要價300大洋),要對它動刀真的有些捨不得,可能等繁殖的多一些再來考慮吧!

除了Sinocrassula以外,還有另外一屬Lenophyllum好像也都是深色的,不過這屬的植物原產於德州以及墨西哥東北部,這些地方是否紫外線也特別強?另外是原產於雲南、緬甸或德州、墨西哥東北部的植物,應該也有不少不是深色的,所以究竟演化出黑色/深色的外表,是否與保護自己免於曬傷有沒有關係?

Lenophyllum reflexum 深蓮

我可以認同如果要吸收所有的波長的光,植物會變成黑色的;不過在有兩個太陽的情況下,為免於曬傷發展出深色的外觀這點,我想大概還需要去研究、研究。

如果純粹以生物化學的角度上來看,在地球上要長出「黑色」的植物並非不可能,但是可能會有兩種情況:

第一種是他可以利用所有的光能,第二種是他可以利用部分的光能,其他部分則是吸收以後以熱能的形式發散掉了。

我們先來看這個從Lehninger生物化學借過來的圖。

從上面這個圖可以看到,存在在高等植物裡面的色素如葉綠素a、b(chlorophyll a, chlorophyll b),以及β-胡蘿蔔素(β-carotene)還有葉黃素(lutein, xanthophyll)加起來,大約涵蓋了以紅光(620-680nm)以及藍光(380-490),對於綠光與黃光吸收得很少,所以高等植物看起來都是綠色的。

不過這並不代表陽光裡面的黃光與綠光在地球上就是完全沒有被利用到;上圖除了葉綠素a、b、β-胡蘿蔔素以及葉黃素以外,還有藻紅素(phycoerythrin)以及藻藍素(phycocyanin)兩種色素;這兩種色素吸收的範圍「恰巧」是黃光與綠光。由於他們不吸收紅光與藍光,所以看起來不是紅的就是藍的,紅色的就是藻紅素,藍色的就是藻藍素。

這兩種色素怎麼來的呢?原來他們存在於藍綠菌(cyanobacteria)中,而藍綠菌生存在水池裡,通常他們生存的環境中一定還有高等植物,如果大家都吸收同一波長,競爭的結果藻類當然爭不過種子植物,所以就要演化出可以吸收其他波長光波的色素。

當然也有可能是先演化出藻紅素與藻藍素,後來的陸生植物為了跟藻類競爭所以選擇吸收黃、綠光波以外的光;不過,從不論是高等植物或藻類裡面的光系統(photosystem, 植物用來捕捉光能的構造)反應中心(reaction center)的色素也還是葉綠素a這點來看,可能是藻類因不敵與陸生植物競爭,另行演化出不吸收紅光、藍光的色素這個可能性較高。當然我非藻類專家,僅就書本上的證據來說話,如果有藻類專家願意給我一些指正,當然是再好也不過了。

所以,回到黑色植物的問題;如果有植物能夠具備所有上圖的色素,當然他有可能看起來是黑的;當然以書上的證據來看,既然不論是高等植物或是藻類都用葉綠素a作為光系統反映應中心的色素,這樣的可能性發生在地球上也並非全無希望的事。

不過,我們的Sinocrassula與Lenophyllum是否為這類的植物,或是為了防輻射而產生大量的其他色素(β-胡蘿蔔素、葉黃素、花青素等)而使植物本身呈現黑色/深色的外觀,這就不是我目前所能瞭解的囉!目前對於Sinocrassula的瞭解就是,因為它進行CAM代謝(景天科都是),所以他長得很慢,而它喜歡強光,但是光線轉弱時也不會死亡,只是生長會變慢而已。或許這會是值得我們去研究的植物(如果可以長快一點的話啊啊啊啊…)?

本文來自Miscellaneous999[2011-05-27]

文章難易度
所有討論 5
葉綠舒
262 篇文章 ・ 5 位粉絲
做人一定要讀書(主動學習),將來才會有出息。


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》