2

0
1

文字

分享

2
0
1

人類天生更適合素食?

科學松鼠會_96
・2013/12/04 ・2528字 ・閱讀時間約 5 分鐘 ・SR值 545 ・八年級

credit: CC by libraryman@flickr
credit: CC by libraryman@flickr

流言:藉由比較草食動物、肉食動物以及人的解剖構造及生理功能,得出結論「人的構造更適合素食」。理由是:1. 人的牙齒和顎骨適合磨碎素食,而非撕裂肉食;2.人的唾液是弱鹼性,較難溶解肉;3.人和草食動物都胃小腸長,適合慢慢吸收不易腐爛的素食,而肉食動物胃大腸短,可快速消化肉,在肉腐爛前排出;肉的殘渣在人的長腸中會產生毒素。

真相:生理結構的比較並不能得出人類的構造更適合素食的結論。人體需要的營養成分有的在植物性食物中含得多,有的在動物性食物中含得多,合理的雜食食譜能夠方便有效地實現營養均衡。純素食也可以實現營養全面均衡,但難度比較大。

人的生理構造並不更適合素食

首先,按照比較生理結構的思路,並不能得出「人類更適合素食」的觀點。比較中存在著多處事實上的「硬傷」。典型的有:人的唾液雖然不是「強酸」,但也不是「偏鹼性」,而是中性偏酸;人的胃液平時在pH=2以下,進食之後也很難到草食動物的pH=4以上;人類的小腸和身高的比值明顯低於草食動物。基於錯誤事實推出的結論,自然也就靠不住。其實,從生理結構上來說,人類既不是草食動物也不是肉食動物,而是雜食動物,和我們的在動物界的近親黑猩猩一樣。不加入雜食動物進行比較,非要讓雜食的人類在「肉食」和「草食」之間選一邊,很不合理。

其次,雖然說人本質上也是動物,但人跟其他動物相比,已經有太多不同的生活能力與生活方式了。比如,不管是草食動物還是肉食動物,它們生命中的主要活動就是覓食與進食。它們的食物來源是「靠天吃飯」,自己並沒有太多的掌控能力。而且,它們只能吃「原生態」的食物,不會選擇、加工、調配食物。而人類, 尤其是現代人,只需要用一點點精力就可以獲得足夠的食物,會對食物進行各種各樣的加工和營養調配——換句話說,不管是肉食還是素食,人類吃的都跟動物們吃 的有天壤之別。用自然界的草食和肉食,來說明人類該吃肉食還是素食,可比性實在太差。

從進化和生理結構來探討人類是不是該素食的問題,瘦駝寫過一篇嚴謹的文章來介紹。有興趣的讀者可以參見〈準媽咪吃素食真的有益嗎?

關於素食與健康長壽的科學結論

要判斷人類是不是更適合吃素,還是應該去探索吃素對人體健康的影響。

「素食者更加健康長壽」的說法流傳甚廣,似乎也符合人們的直觀感覺。為了查證這種說法是否正確,英美等國科學家進行了幾項大規模、長時間的跟蹤調查。結果發現,與社會平均水平相比,素食者的平均預期壽命確實更高——這個結果當然讓素食者很高興。不過,素食者還伴隨著其他的生活方式,比如:素食者中抽煙、喝酒的人更少,他們一般飲食比較節制,甚至生活方式的其他方面——比如鍛鍊、心態等也「更為健康」。科學上有很充分的證據表明這些「混雜因素」有助於健康長壽,但想知道素食到底對健康長壽有什麼樣的影響,就要排除這些因素的影響。隨機雙盲試驗很難進行,不過可以用統計工具對大樣本的調查數據進行回歸, 把「混雜因素」對結果的貢獻剔除出去。結果發現,素食這個因素對健康長壽其實沒有明顯的影響。也就是說,素食者健康長壽的原因,主要是他們的生活方式的其他方面,而不是素食本身。

素食者容易缺乏的營養成分

理論上說,人們可以從素食中獲得幾乎所有需要的營養成分。但是,人體需要的營養成分中,有一些在動物性食物中含量豐富,在植物中則不常見。另一方面,多數植物性食物所提供的營養成分比較單一。

蛋白質是極其重要的一種營養成分,尤其是對處於成長發育中的未成年人。人體攝取蛋白質,是為了滿足對氨基酸的需要。一般而言,蛋、奶、肉中的蛋白質在氨基酸組成上與人體的需求更為接近,而且容易消化,所以被稱為「優質蛋白」。而常見的植物性食物中,只有大豆中的蛋白質是優質蛋白,其他的植物蛋白單獨滿足人體氨基酸需求的能力都很低。

鈣、鐵、鋅是素食者比較容易缺乏的礦物質。通常的飲食中,攝取鈣最方便的途徑是奶製品,而鐵和鋅也是通常在肉中含量比較高。如果是不排斥蛋奶的「非嚴格素食者」,問題倒還不大。如果完全素食,就比較麻煩。豆類含有不少鈣、鐵和鋅,深綠色蔬菜含有比較多鈣和鐵,全榖製品中有比較多的鋅豆類含有比較多的鐵和鋅,全榖製品中有比較多的鋅。但是它們往往與植酸等其他分子糾纏在一起,被人體吸收的效率比較低。

維生素B12幾乎只存在於動物性食物中,完全素食者就難以藉由天然素食來解決。它與葉酸比較相似,所以缺乏時並不容易被檢測到。等到維生素B12缺 乏的症狀出現,就為時已晚。在許多推廣素食的宣傳資料中,列出了一些「富含維生素B12」的植物性食物。但是,它們往往只是來自於傳說,並沒有可靠的科學證據證實這些食物能夠有效提供維生素B12。

人類的合理食譜

動物性食物,比如肉、蛋、奶等,含有大量人體需要的營養成分。不過,很多現代人則是這些食物吃得太多了。過猶不及,其中含有的不利成分,比如脂肪、 膽固醇等,也就變成了「健康殺手」。所以,現代的膳食指南,主張人們增加飲食中的素食比重。美國癌症研究協會主張:三分之二以上的食物來自於植物,有利於降低癌症的發生風險

素食主義的另一種理由是素食有利於人類的可持續發展。人類所有的食物都是需要在一定的土地上,消耗水並且轉化太陽能而得到。產生同樣數量的食物,素食所需要的土地和水都要遠遠低於動物性食物。從這個角度,在獲得全面均衡營養的前提下,提高素食在食譜中的比例,是應該鼓勵的。

結論

通過比較人類與食草和食肉動物的生理結構來說明「人類更適合素食」,事實基礎和論證方式都不可靠。人體需要的營養成分有的在植物性食物中含得多,有 的在動物性食物中含得多。基於現代科學對人體營養需求、食物成分分析、以及各種食物消化吸收過程的認知,合理的雜食食譜能夠方便有效地實現營養均衡。在補充維生素B12的前提下,有可能通過素食來獲得所有的營養。但是,考慮到一般人往往不具有充分的專業知識,也不容易長期堅持精心調配食物,通過完全素食來實現「營養全面均衡」難度比較大。

關於本文

轉載自科學松鼠會,作者,首發於果殼網(guokr.com)「謠言粉碎機」主題站〈人類天生更適合素食?

文章難易度
所有討論 2
科學松鼠會_96
112 篇文章 ・ 6 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀

0

1
0

文字

分享

0
1
0
最致命的動物毒素,來自「殺手芋螺」!——《海之聲》
臉譜出版_96
・2022/11/20 ・2217字 ・閱讀時間約 4 分鐘

芋螺科(Conidae)──那些有著象形文字圖案、在十七世紀激起林布蘭靈感與貝殼瘋的錐形貝殼建造者,也打造了一座神經毒素軍火庫。牠們從八百多種化學物中汲取精準的劑量,捕捉獵物。

這些新化合物瞄準獵物身上的不同受體,讓全世界速度最慢的這種軟體生物,得以殺死速度最快的魚。芋螺也會部署毒素自我防衛,這就是為什麼牠們有時會攻擊那些撿拾或踩到牠們的人。

殺手芋螺(Conus geographus,又名地紋芋螺)的毒素,是目前已知的動物毒素中對人類最致命的。牠們有「香菸芋螺」(Cigarette Cone)的外號,據說是因為被牠螫到的受害者,在毒發身亡之前,還有時間可抽根菸──但實際上要花上好幾個小時才會死去。

正準備攻擊獵物的殺手芋螺。圖/臉譜出版提供

芋螺的毒素,是毒也是藥

自然界的殺人武器也能用於治療。著名的案例之一,就是從芋螺毒素開發出來的一種名為含辛抗寧(ziconotide,商品名 Prialt)的慢性疼痛藥物,強度超過嗎啡一千倍,而且不會上癮。但這項藥物無法穿越血腦屏障(阻止血液中化合物侵入腦部的保護性屏障),它必須透過脊椎穿刺輸入,無法緩解因為嗎啡不再有效而處於極度疼痛狀態的某些癌症患者與愛滋患者。

霍福德深信,在海底、海岸或珊瑚礁的某個地方,在眾多有毒的海洋動物中,總有一種會攜帶可穿越血腦屏障的鎮痛性化學物質;在某些未知軟體動物的外殼下方,隱藏著一種鴉片類止痛藥的替代物。

目前,她正在繪製軟體動物基因組,尋找可製出該種藥物的芋螺毒組合,以及可治療癌症與其他疾病的配方。DNA 定序與分子親緣關係學都是比較容易的部分,但更大的挑戰是如何拯救動物多樣性,霍福德認為那才是改善所有生命的關鍵──在這個許多物種還來不及命名就消失的時代。

含辛抗寧的化學結構。圖/Wikipedia

芋螺的毒素也能殺死人類!

目前所知第一位被「芋螺小魚叉」殺死的,是安汶東南方班達群島的一名女性奴隸,該島目前隸屬於印尼的摩鹿加省。一六○○年代初期,荷屬東印度公司以大屠殺手段奪取班達群島,荷蘭人將倖存者與附近島民當成奴隸,讓他們在肉豆蔻種植園工作。

博物學家倫菲爾斯在他的《安汶珍奇櫃》中,講述了其中一位的悲慘故事:「她只是將拉圍網時從海裡撿拾起來的小香螺拿在手上。她走在海灘上,突然感到手部微癢,癢感逐漸爬上手臂,穿過整個身體,然後當場就死了。」

倫菲爾斯的敘述是官方紀錄中的第一起。毒芋螺攻擊人事件共有一百四十多起,其中三十六起造成死亡。真實數字很可能遠高於此;在先前幾個世紀,大多數的死亡並未得到報導與紀錄。華盛頓大學無脊椎動物生物學家艾倫.科恩(Alan J. Kohn,他的姓氏﹝Kohn﹞與鑽研毒芋螺﹝cone﹞的生涯頗為合拍)六十幾年來一直保留著該份紀錄。

一九五○年代初唸研究所時,他在耶魯實驗室的水族箱中,第一次觀察到一隻細線芋螺(Striated Cone)用「顯然是非常強烈的一種神經毒素」麻痺了一條魚。往後的歲月裡,他持續研究芋螺令人印象深刻的演化與生態學。

細線芋螺。圖/Wikipedia

帶有劇毒,卻也最具多樣性

芋螺演化出八百多個物種,使牠們在多樣性方面成為最成功的活軟體動物。科恩的研究有助於解釋,為何有這麼多近親可以在熱帶地區住得如此靠近(同一塊珊瑚礁上可高達三十六種不同物種),卻不會為了同樣的食物彼此競爭。

答案是,不同種的芋螺會製造各自的獨門毒素,瞄準不同的獵物。大多數芋螺都吃蠕蟲,有些也吃軟體動物,大約有一百種是食魚動物。有些獵魚者演化出用魚叉麻痺獵物,有些則是用世界上最美麗的漁網。

鬱金香芋螺悄悄貼近一條小魚,帶著流蘇般迷你觸手的嘴網翻騰滾動。這動物沒有牠的魚叉親戚那種戲劇性,只是輕輕將魚兒包入網中,釋出牠的麻痺毒素,並將那隻還來不及感受到自身命運的昏迷生物吸入體內。

鬱金香芋螺。圖/Wikipedia

親身試毒的海洋科學家

根據目前所知,只有獵魚為食的芋螺曾奪走過人命。科恩甚至認為,殺手芋螺很可能是唯一殺過人的。而目前已知唯一一位曾給自己注射芋螺毒素的人士想必也是如此認為,否則他就是有自殺傾向。

一九七○年代末,東京海洋科學家吉葉繁雄,從日本玳瑁芋螺(Thunderbolt Cone,學名 Conus fulmen)中提煉出牛奶白的生物毒素,將毒素注入不同的海洋生物、兩棲動物與哺乳動物體內。魚類抽搐而死;蛙類死前,銳角狀的後腳僵直不動;兔子失去行走能力,但一小時後恢復。吉葉也將小劑量注入自己前臂。

「沒出現神經性或功能性障礙,」他愉快地寫著。「只有局部發現諸如疼痛、發紅、缺血、水腫、搔癢等症狀,大約持續三天。」

——本文摘自《海之聲:貝殼與海洋的億萬年命運》,2022 年 11 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

5

8
0

文字

分享

5
8
0
野生動物們,別來可無恙?
GJW_96
・2022/07/06 ・4031字 ・閱讀時間約 8 分鐘

  • 作者:翁國精/國立屏東科技大學野生動物保育研究所 副教授
山羌。圖/inaturalist

小時候,我對野生動物最深刻的印象是來自高雄縣旗山、六龜、甲仙一帶林立的山產店。像是倒掛在鳥籠裡的狐蝠、瑟縮在狗籠裡的白鼻心、炒得香噴噴的山羌肉,還有跟橡皮筋一樣久嚼不爛的飛鼠肉(是的,我嚼過橡皮筋),都帶給我很大的衝擊。

這時期的台灣森林,是一個由消費市場驅動,獵人扮演頂級掠食者的生態系,同時,開墾和伐木,也夾擊著野生動物的生存。後來,在民國 78 年野生動物保育法頒布後,這種色香味俱全的野生動物體驗,逐漸走入歷史。而沒有了野生動物的消費市場,原住民也不再依賴狩獵作為經濟來源,再加上國家公園、保護留區相繼設立,野生動物開始獲得了休養生息的契機。

野生動物們過得好嗎?透過自動相機一探究竟

所以,這些年來野生動物們過得好嗎?問題的答案從來就是個謎。
即便在國家公園裡面也只有零星、短期的動物相調查。

到底台灣的野生動物資源如何變化?保育工作是否有成效?就連生態學者也難以一窺全貌。2013 年,鼬獾狂犬病爆發,我們終於意識到,自己對於野生動物資源缺乏掌握。

原先,我們以為 1961 年後,台灣就已經沒有動物的狂犬病案例,那麼,2013 年的爆發,到底是新的境外移入疫情?還是代表其實這 50 年來,狂犬病在台灣從來沒有消失過?

鼬獾。圖/inaturalist

​​​​​​雖然現在基因定序的技術非常成熟,但是我們沒有 50 年前的病毒基因可供比對,於是鼬獾的族群變化就成了最關鍵的答案。如果台灣的狂犬病從來沒有消失,則鼬獾應該已經適應與病毒共存,成為保毒宿主,族群不會有劇烈的變動;但如果這波爆發是新傳入的疫情,則鼬獾的族群勢必受到衝擊,會有非常明顯的減少。

可惜的是,台灣從來沒有針對任何野生動物做長期的監測,所以林務局與防檢局在狂犬病爆發後開始合作,在苗栗、南投、台東等三個狂犬病最早出現的縣市以自動相機監測鼬獾。之後由林務局逐步擴大規模至全台及蘭嶼、綠島,在林班地架設自動相機監測樣點,拍攝中大型的哺乳動物。

目前為止,台灣以及蘭嶼綠島共有將近 300 個自動相機的監測樣點持續運作中,且監測樣點的數量,也仍在持續增加中。

重新開始監測野生動物!

自動相機是目前野生動物監測方法中效率最高,且最廣泛被使用的調查工具(圖1),操作方法可以標準化、自動化且全年無休。這些相機由巡山員負責操作及回收資料,各林管處承辦人員辨識照片,屏東科技大學野生動物保育研究所、以及嘉義大學森林暨自然資源學系,負責訓練人員及確認資料正確性,之後進行分析及撰寫報告(參考資料1),而中央研究院的生物多樣性研究中心,則負責開發軟體、並建立「臺灣自動相機資訊系統」(圖2),提供照片資料倉儲、搜尋、統計分析等功能。

圖1:監測野生動物的自動相機。
圖2:中央研究院生物多樣性研究中心負責開發的臺灣自動相機資訊系統。目前尚未公開。

為了反應動物族群量的變化趨勢,所有照片資料都被轉換成「單位時間拍到的有效照片數」,概念上相當於「單位努力捕獲量」,國際上慣稱為相對豐度指標 (relative abundance index),國內則慣稱為 OI 值(occurrence index)。

這個指標受到動物族群量和動物活動頻度的影響,兩個因子的變化都會改變指標,所以並無法直接用指標值換算出動物的實際族群量;也因為如此,我們通常將指標值稱為族群豐度或相對豐度,而不是實際族群量或族群密度。

但是根據許多研究,這個指標和實際的族群量呈高度的正相關,也就是動物數量增加的時候,指標也會上升,動物減少的時候指標,會隨之下降,因此很適合用於反應動物族群量的變化趨勢。目前的哺乳動物長期監測網,有將近 300 台相機持續運作當中,跨單位的合作,讓陸域中大型哺乳動物的監測邁向長期化、系統化、標準化、公開化的里程碑。

雖然過去我們曾錯過了數十年,但經過了這些年的監測,我們發現哺乳動物們除了石虎還需要我們再加把勁之外,其他物種其實都過得還不錯,而且無論是不是保育類都是如此(圖3)。山羌、山羊、水鹿豐度不斷上升,狩獵壓力不曾稍減的野豬趨勢持平,鼬獾似乎已經從狂犬病的侵襲中回穩,穿山甲也有穩健的表現。

圖3:。林務局自動相機長期監測網的監測成果。

台灣森林的樣貌正在演替

這樣看來,台灣的森林似乎再度欣欣向榮了?可惜,其實未必。

因為頂級掠食者的減少,目前草食獸正逐漸接手,主宰森林的演替方向。擁有登山經驗的朋友或許會發現,某些中高海拔森林中的芒草牆消失了,森林底層的植被比過去更稀疏甚至消失(圖4,圖5),從前需要砍草鑽行的苦日子不再,造林用的苗木,也因為被草食獸取食而導致造林失敗。

圖4:在草食獸的啃食下,一定高度(稱為啃食線,browsing line)以下的樹葉、附生植物及地被植物都幾乎消失。圖為楠梓仙溪林道旁的森林。
圖5:梅蘭林道盡頭七溪山一帶,海拔約 2300 公尺。
左圖為 2006 年 12 月所攝,右圖為 2015 年 12 月同一地點所攝,可見芒草及其他地被植物幾乎完全消失(屏科大森林系吳幸如老師提供)。

以水鹿為例,許多地區開始出現水鹿啃食樹皮的現象(圖6),像是知本森林遊樂區、塔塔加遊憩區(圖7)、南橫天池及沿線的登山步道等(圖8),連遊客都向國家公園表達關切。水鹿啃樹皮的時候還會挑選樹種,而且偏好啃食小樹。這種選擇性的啃食,正慢慢改變台灣的森林樹種組成,甚至是演替的方向,當然也陸續影響了共同生活在森林中,依賴這些植物的小型哺乳動物、鳥類和昆蟲等。

台灣的森林,正從鐘擺的一端——頂級掠食者主宰的世界,擺向另一端——草食獸決定的樣貌。

圖6:水鹿在楠梓仙溪林道啃食紅檜樹皮。掃描 QR code可看影片。
圖7:塔塔加黑森林步道上遭水鹿啃食的鐵杉與光禿的地表。(周庭安/攝)
圖8:南橫天池遭水鹿啃食的五葉松。

事實上,野生動物數量的改變不僅僅影響森林的樣貌,更回過頭來衝擊著人類的文化和對於保育的思考。因為野生動物的增加,獵人不再需要翻山越嶺追尋獵物的蹤影,狩獵範圍逐漸退縮到部落附近,甚至能夠當天來回。狩獵的技能、山林智慧的傳承,以及傳統領域的維護,都因此而面臨危機。

雖然狩獵活動未曾消失,但早已對野生動物不構成威脅,如同墾丁的梅花鹿,因為成功的復育而導致高位珊瑚礁森林及農作物受到危害,迫使墾丁國家公園必須逐步「回收」野放成功的鹿隻。未來,會不會有一天,水鹿將會從人們心目中的「森林吉祥物」,轉變為森林和農作物的害獸?

台灣水鹿。圖/inaturalist

小結

過去,獵人們會注意動物的數量,而調整自己的狩獵頻度和地點,多的時候多打,少的時候就少打、或者換地方打,讓動物有休養生息的機會。換句話說,獵人其實就是自然資源的經營管理者,而狩獵文化,則是一種永續的資源利用模式。

而從野生動物經營管理的角度來看,野生動物是一種可再生資源,人類可對野生動物做合理的利用,並確保其永續生存。為了維護生物多樣性,物種間不平衡的現象可以由人類適度介入處理。

所以,從現狀來看我們曾經勾勒的保育的美好願景,是不是遺漏了我們自己?

人類和野生動物都是生態系的一份子,彼此以有形無形的方式聯繫著​​。目前草食動物族群量上升主要是因為原有的捕食者幾乎消失,但捕食者消失,卻不是一個正常的生態系應有的現象。

圖/envato elements

草食動物對森林環境的衝擊,會影響到共域的其他物種,例如森林底層的昆蟲、鳥類、其他哺乳動物等,以及森林的發育和演替。如果任其發展,除了森林裡的動植物受衝擊,也會因為跟人類的接觸而引發疾病、交通安全、農損等問題,最後草食動物的族群,也會因為超出環境承載量而快速崩毀。

當我們忘了把自己加入願景的規劃中,就會讓好不容易回歸自然的梅花鹿轉眼變成害獸被回收,或者如獼猴面臨我們的危害防治手段;而當我們只考慮自己的時候,就會造成像流浪犬貓、被放生的外來種等等對環境和動物帶來的危害。​​​​食物鏈中雖然有掠食者和獵物之分,但沒有永遠的強弱和輸贏,兩者永遠互相依存。

所有討論 5
GJW_96
1 篇文章 ・ 2 位粉絲
目前任職於國立屏東科技大學野生動物保育研究所,專注於水鹿的研究。

1

6
1

文字

分享

1
6
1
隱翅蟲的毒液生化武器,演化上如何組裝而成?
寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
193 篇文章 ・ 927 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。