0

0
0

文字

分享

0
0
0

感應式充電巴士前途無窮

thisbigcity城事
・2013/05/31 ・838字 ・閱讀時間約 1 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

猶他州州立大學附設公司WAVE開發出的電動巴士Aggie

作者:Giles CrosseGreen Futures

感應式電力傳輸技術已經有了突破,可望改變電動巴士未來發展,2011年7月,美國猶他州州立大學研究基金會展示的新科技中,在五千瓦、懸空十英寸的環境下,電力傳輸效能可達九成,讓巴士有機會採用這項技術,減少市區污染與節省成本。

此後在美國聯邦運輸局270萬美元獎助之下,該校及其附設公司WAVE開發出Aggie,這輛電動巴士藉由感應充電,在乘客上下車時,即可借助地面的充電板補助電力,不受氣象限制,縱然公車並未完全準確停在充電板上,也和現有大眾運輸系統同樣可靠,如柴油巴士、天然氣巴士等。未來電動巴士亦可能全日營運,彌補隔夜充電技術的缺陷。

Petra Beitl為Liberty Cars公 司行銷總監,同樣在為電動巴士開發更具效能的充電系統,他表示,雖然這項技術初期建置成本較高,長期而言應能節省更多費用。猶他州州立大學行銷與商業發展 專家Kate Peterson亦有同感,她表示,「期初投資攤平後,長期維護與成本估計相當於每加侖約0.4美元。這項技術強調基礎建設,充電板必須安裝在路面上,在落實第一套商用系統後,實際價格將更明確,相較於傳統液態燃料,無線充電系統最初成本較高,但生命周期成本較低,因為電動車營運開銷較少,故尤其在歐洲將 比液態燃料便宜許多」。

-----廣告,請繼續往下閱讀-----
Aggie的感應充電板

此外,電池成本也能節省不少,WAVE公司商業及產品開發副總裁James May表示,「無線充電讓電動車能大幅縮小電池尺寸」,反觀一般系統使用的電池「尺寸又大、又重、又貴」。

標準制定單位SAE International正在研議感應式充電相關標準,James May指出,應該有助無線系統「應用更廣泛」。

轉載自 This Big City 城事,本文原載於獨立永續專業團體「未來論壇」雜誌Green Futures

文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。

0

6
1

文字

分享

0
6
1
綠能當道,敢不談發展電動車嗎?
賴昭正_96
・2024/02/09 ・7388字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

在我看來,一位只讀報紙和當代作家書籍的人就像一個蔑視眼鏡的極度近視眼人:他完全依賴他那個時代的偏見和時尚,因為他永遠看不到或聽到任何其它東西。

——愛因斯坦(1879-1955)1921 年諾貝爾物理獎

2013 年 7 月,筆者在《科學月刊》之「大家談科學」專欄裡指出:電動車還是需要能量的,因此在考慮發展電動車時,必須同時考慮其能量來源的效率。如果發電廠的發電效率與直接燃燒汽油的汽車效率一樣(見「附錄-熱力學」),那麼發展電動車實質上的優勢只是將環境污染移到鄉下而已。該短文一出現後,立即有讀者分別在《科學月刊》及網際網路上反應,提出電動車的好處,應該發展;為此筆者又寫了兩篇有關發展電動車可能碰到的問題(詳情請參閱《我愛科學》)。

兩年半後(2016 年 2 月 21 日),筆者又在第 1666 期《世界週刊》提出;中國為燃煤發電的大國,要產生同樣的能量,燃煤所排放的二氧化硫、重金屬(水銀、鉛、鎘、及砷等)及懸浮顆粒(現代汽油車的廢氣中已幾乎不再出現)對人體的健康有巨大的負面影響,因此在未改變整個發電結構之前,在中國大量使用電動車不僅不能「減少空氣污染」,反而會對整個環境造成更大的災害。加上可設置私人充電樁的私宅少,電動車不可能普及化,因此「中國不適合發展電動汽車」。同樣地,此短文一出,立即有讀者反駁,謂中國不能落後,必須跟其它國家一樣,積極發展電動車。

中國現在已成為全球最大的電動車製造商及市場;截至今年(2023年)9 月,純電動車佔中國汽車銷量 25%。在全世界到處均在高喊發展電動汽車的此時,顯然筆者是錯了!真的嗎?在回答這問題之前,因為可以幫助我們了解電動車的銷售,讓我們在這裡先來複習一下電動車發展的簡史吧。因本文涉及不少時間點(如今年、現在),請讀者注意本文完稿於 2023 年 12 月 19 日。

電動車的發展

1895年的電動汽車。圖/wikimedia

電動車當然不是一個新概念;事實上早在 1830 年代,第一輛電動車就已經被開發出來。而在台灣,筆者 1975 年暑「放棄高薪」從義大利回到清華化學系時,當時的工學院院長毛高文就已經積極在推動電動車的研發:1974 年首度發表自製電動車「清華一號」,從新竹走省道一路開到台北,開啟了國內電動車研發的先河。然而,由於各種原因,包括豐富的汽油和缺乏可靠的電池,電動車一直沒有商業化。電動車的真正復興發生於 21 世紀初鋰離子電池的發現與成熟 1。下面可以說是全世界電動車普化的兩個轉捩點:

-----廣告,請繼續往下閱讀-----

第一個轉捩點是日本豐田普銳斯(Priuse)的推出。普銳斯於 1997 年在日本發布,成為世界上第一款量產的混合動力電動車(同時使用電池與汽油,完全不用插電,內燃機提供電源;詳情請參考《我愛科學》之「混動車值得發展嗎」);2000 年,普銳斯在全球發布,一推出就獲得了名人的青睞,從而提高了該車的知名度。從那時起,不斷上漲的汽油價格和對碳污染的日益關注,使普銳斯成為全球最暢銷的混合動力車。

另一個幫助重矗電動車的事件是 2006 年矽谷一家小型新創公司。特斯拉(Tesla)汽車公司從美國能源部貸款計畫辦公室獲得了 4.65 億美元的貸款,在加州建立製造工廠;於 2010 年宣布將開始生產一款一次充電可行駛超過 200 英里的豪華電動跑車。此後不久,特斯拉就因其汽車贏得了廣泛讚譽,成為加州最大的汽車行業雇主。特斯拉的成功、日益受到關注的全球氣候溫度上升、加上政府政策的推動與大量金錢補助(特斯拉幾十億及購車者),電動車開始變得更主流,迫使許多大型汽車製造商加速開發自己的電動車,甚至決定放棄傳統汽車的製造!

特斯拉汽車公司的創立

現在一談到電動車,似乎不能不談特斯拉。而一談到特斯拉,似乎便不能不談充滿爭議性、全世界最富有的馬斯克(Elon Musk):相信很多讀者都以為他是特斯拉的創辦人,但事實上他只是提供創辦資金,不是創辦人!

馬斯克(Elon Musk)。圖/wikimedia

現在廣為人知的故事是 2003 年時,艾伯哈德(Martin Eberhard)和塔彭寧(Marc Tarpenning)為了要為他們剛剛成立的新公司收集消費者數據,開車在美國最富有之一郊區、史丹佛大學所在地的帕洛阿爾託(Palo Alto)街道上來回走動,觀察其居民擁有哪些類型的汽車。他們發現在價值 200 萬美元的房屋前,總是停著一輛豪華轎車和一輛當時環保寵兒的普銳斯。因此他們認為環保主義已經來到了富人家門口,可以開始向少數的富人出售電動車,希望最終會滲透到中產階級。他們以塞爾維亞裔美國發明家特斯拉(Nikola Tesla)命名,成立了特斯拉汽車公司。該公司的資金來源中最著名的就是貝寶(PayPal)控股公司聯合創始人馬斯克。馬斯克為這家新企業提供了超過 3000 萬美元的資金,從 2004 年開始擔任該公司董事長;2008 年艾伯哈德和塔彭寧兩人離職後,馬斯克接任執行長。

-----廣告,請繼續往下閱讀-----

特斯拉公司於 2010 年上市;2020 年開始賺錢 2 時,其股票市值首次超過了通用汽車公司和福特汽車的總市值。

炫耀性保護

艾伯哈德和塔彭寧相信因為環保主義的抬頭, 富人會買電動車來展示其綠色美德的現象,經濟學家稱為「炫耀性保護」(conspicuous conservation);他們也相信這最終還是會滲透到中產階級的。果然不錯,富有的愛好者競相排隊購買特斯拉,使得其市值在 2021 年曾經一度超過 1.2 兆美元 3,成為世界上最有價值的公司之一。歲月匆匆,艾伯哈德和塔彭寧所盼望之慢慢普及的時候似乎應該到了,但卻沒有發生!顯然中產階級消費者就是不合作:他們似乎像筆者一樣,對於如何處理收入有自己的想法,他們需要汽車來上班、購物、帶小孩上學、度假、⋯⋯,他們沒有必要、也負擔不起購買一輛昂貴且不實用的電動車來炫耀。

注意電動車發展的讀者應該都已注意到:最近(2023 年 11 月)報章雜誌都開始報導電動車銷量在一年前就已經開始放緩,促使許多電動車製造商大幅降價,並在第一季引發價格戰。電動車的需求雖然還在擴張,但成長速度已大幅放緩。根據《華爾街日報》報道,繼去年上半年全球成長 63% 後,今年同期僅成長了 49%;而與此同时,2023 年混合動力車銷量卻大幅成長(前三季年增 48%)。

圖/envato

汽車製造商終於開始有點頭痛了:第一波富有的環保主義者買家已經購買了他們的電動車後,現在該如何推動到中產階級的手中呢?通用汽車、福特、賓士、日產,甚至特斯拉,都因最近需求放緩發出了危險信號:通用汽車縮減了 2024 年的計劃,並表示將推遲新電動卡車工廠的開幕;福特正在考慮削減其去年非常暢銷的電動卡車工廠的班次;日產正在將更多資源轉移到混合動力汽車而不是電動車;馬賽地-賓士將現在的電動車市場描述為「殘酷」;⋯⋯⋯。曾經自稱將是「特斯拉殺手」的美國豪華跑車和旅行車製造商 Lucid 現在看起來也只是「普通而已」,宣布將生產速度放緩 30%,許多人甚至擔心該公司能否在當前電動汽車行業的低迷中生存下來。

-----廣告,請繼續往下閱讀-----

電動車車主的自述

2023 年 4 月 26 日《洛杉磯時報》社論版的副主編加爾薩(Mariel Garza)在「我已準備好更換我的(純)電動車」一文寫道:

我喜歡我的電動車,我真的喜歡。我喜歡我永遠不需要加汽油;我喜歡它在街上安靜滑行的樣子;我喜歡它有那麼多馬力——如果我願意的話,我真的可以超越汽油動力的跑車;我喜歡貼上可以讓我在高載客量車道上單獨駕駛的貼紙;我喜歡日常維護只不過是旋轉輪胎而已 4。但三年後,我正在認真考慮將其換成插電式混動汽車(見後)。⋯⋯為什麼? 因為儘管我很喜歡我的車,但我討厭我不能在這個引領電動車革命、確信我可以(隨時)在需要時充電的加州旅行。

筆者不相信加爾薩的後悔僅是少數人的意見,例如 2022 年 8 月 19 日《世界日報》就報導:

川渝地區因高溫限電造成大量充電樁暫停營運,使電動車車主感受到前所未有的「充電」壓力 5。有網約車師傅連跑八台充電樁才找到電,也有女性車主半夜 12 時還在外排隊 2 小時以上。充電焦慮讓車主們怕「掛在路上」,大嘆「不是在充電,就是在找充電樁的路上」。⋯⋯公共安全部數據顯示,今年上半年全國新能源汽車保有量已突破 1000 萬大關。高溫限電也引發了新能源汽車充電焦慮,多位網友網上抱怨「還是油車香」、「未來買新能源車要三思了」。

但是在政府及時髦的推動下,有多少人能獨立地三思、不人云亦云呢?

綠色能源

贊成發展電動車的還有一個建立在沙灘上的願景,那就是將來的能源將是綠色的,而不是從發電廠燃燒煤(氣)出來的。為什麼這是建立在沙灘上的希望呢?因為根據台電公司的相關資料,我國在 2021 年的再生能源佔比只有 6% 左右,距離原本政府時程內設下的 20% 目標非常遠。又經濟部今年 6 月 21 日公布最新全國電力資源供需報告,揭露 2023 年至 2029 年用電及供電預估,顯示再生能源建置進度較預期延後:原先預估 2025 年綠電占比要達 20%,重新調整為 15.5%,並謂至少必須等到 2026 年 10 月再生能源才會達到 20% 的目標。讀者相信嗎?

-----廣告,請繼續往下閱讀-----

而上面所提之「川渝地區因高溫限電」正是發生在中國水電第一大城的四川:其水利發電量佔全省發電量的 81.6%!能將日常生活用的電動車能源建立在難以預測與控制的綠能上嗎?由於此一罕見的大旱,北京當局為確保電力供應,宣告擱置優先發展清潔能源計畫,全力擴大煤礦的開採以及增加外國煤炭進口——中國應該發展電動車嗎?美國有線電視(CNN)指出,中國目前對煤炭發電的依賴已超過去年(因為大量使用電動車?),今年 7 月中國煤炭發電環比增加 22%。同樣地,去年歐洲大旱也造成其水利發電量產減少 20%(義大利 40%,西班牙 44%);筆者好像還在報上看到過:為了達成綠色發電量比的目標,有些歐洲國家因之想將天然氣發電改歸屬於綠色發電!這不是「自欺欺人」嗎?

不再需基礎設施配合的混動汽車

現在智慧型手機找充電站已經非常容易,但是想一想:好不容易改道開到充電站,卻發現唯一的充電樁壞了 6,不知道讀者將有何反應,但筆者雖然早已過了兩次四十而不惑,一定還三字經罵個不停!再不然就是所有的充電樁全被佔用了、或有一佔著茅坑不拉屎(已經充電完畢)的車主不知道跑到哪裡去了、……只好五十而知天命了:等吧。

充電停車場。圖/wikimedia

相信有些人會辯稱那是因為充電站不夠多的關係,如果充電站像現在加油站一樣,這問題就不會出現。但簡單的計算告訴我們:這問題還是存在的,因為最快的充電大概也需要 30 分鐘 7,而一般加油的時間只要 5 分鐘左右!事實上這正是筆者在 2013 年 8 月之「混動汽車值得發展值嗎」所指出的:「即使充電站能像加油站一樣普及,除非你多的是時間,否則等充電大概會讓你急得像熱鍋中的螞蟻。因此筆者認為電動車不可能大量取代汽油車,它只能用於日常上、下班或購物用。」

反之,在「混動汽車值得發展嗎」裡,筆者也辯謂:完全不用插電之電池與汽油兩用的混動汽車不但無純電動的缺陷,它的(汽油)能量使用效率已高達汽油汽車的兩倍以上,也不需要大量建造充電站來配合,因此應是將來汽車發展方向的主流。

-----廣告,請繼續往下閱讀-----

在這段期間裡,市面上已經出現了一種可以完全使用汽油(不需要充電)、但是也可以充電的「插電式混動汽車(plug-in hybrid)」:以電池為主、汽油引擎為輔的混動汽車;前者可以在家中車房充電,用於日常上、下班或購物用,後者用於長途旅行(不需要找充電站)。事實上中國的插電式汽車市佔率已經突破 37%,高過純電動車的 25%,估計到今年底,將可能接近 40%。在美國,今年第二季混動汽車的 7.2% 輕型車輛市佔率也超過純電動車的 6.7%,插電式混動汽車則從 2021 年初的不到 1% 上升到 1.7%。

高處不勝寒

豐田汽車雖然在電動發展史上佔了一席非常重要的地位,但其第一款純電動的汽車卻遲滯到 2022 年 5 月才出現 8。在全世界一片發展電動車的時髦下,讀者應該不難想像到其執行長所受的壓力。今年元月,豐田汽車創始人的孫子豐田章男終因緩慢採用電動車,導致其領導能力受到質疑,而決定於 4 月 1 日辭去當了將近 14 年的執行長及總監職。 

在特斯拉 10 月中公佈了災難性的第三季收益,投資者意識到電動車並不是獲利的靈丹妙藥後,當時已改任豐田汽車公司董事長的豐田章男終於喘一口氣,表示銷售放緩事實上證明了他對電動車的抵制是正確的,並補充說:「人們終於看到了(電動車的)現實」。豐田北美業務銷售主管克里斯特(David Christ)11 月 26 日向《華爾街日報》表示:「這是一個異常火爆的市場」,豐田正在盡可能大量生產混合動力車。

豐田 bZ4X。圖/wikimedia

同樣地,平時很少得到讀者的直接反應,但筆者在 2013 年及 2016 發表不贊同發展純電動車的看法時(因為有更好的方案),立即受到一些批評;使得筆者在 2017 年出版之《我愛科學》的自序裡覺得「高處不勝寒」。10 年後的今天,看來或許已經不再那麼冷了?!

-----廣告,請繼續往下閱讀-----

結論

美國環保署今年發布了令人非常沮喪的《2022 年汽車趨勢報告》,謂 2021 年的最終數據顯示,美國在汽車減少二氧化碳排放方面仍然進展甚微,他們說是因為消費者(富人)雖買了電動車,但車房裡停的卻是更浪費汽油、更豪華的大車子。但更可能的解釋不正是筆者所說的「發展電動車未必能減少空氣污染」嗎?

即使在汽車大國的美國,私人汽車所造成的空氣污染佔不到 20%,因此筆者認為發展什麼樣的車子都只是表面的裝飾而已,因為全球加速暖化與空氣污染背後的主要原因是:人類永無止境的慾望。只要人的慾望不降、鼓勵消費的經濟理論不改,世界能量的使用將只會有增無減,否則將被識為「經濟衰退」或「落後國家」!而如「附錄-熱力學」所言,能量大部分都是透過效率最差的熱來產生的,在產生的同時,一定要製造出大量的廢熱,這些廢熱通常消散到大氣、河流、湖泊、甚至海洋等大型水體中,導致水的內部熱量增加。根據 2022 年年底美國太空總署的估計,自 1955 年有記錄以來,百分之九十的全球暖化都發生在海洋中。筆者不知道為什麼我們不談這一更嚴重的問題:掩耳盜鈴?眼不見為淨?不願意面對必須節慾的事實?⋯⋯或正是愛因斯坦所說的「時代的偏見和時尚」?

麥肯錫(McKinsey)2022 年 4 月報告謂;「如果到 2030 年,所有銷售車輛中有一半是零排放車輛(符合美國聯邦目標),我們估計美國到那一年將需要 120 萬個公共電動車充電樁和 2,800 萬個私人電動車充電樁。⋯⋯消耗資本超過 350 億美元。」這巨額開支(台灣 2023 年總生產額的 3% 左右)用來改進現有的基礎設施(如發電效率、增加其二氧化碳的排放回收等)不是更實際有用嗎?

附錄-熱力學

熱也是一種能量,但熱力學告訴我們它是品質最差的一種,我們一旦將其它能量變成熱,就再也不能 100% 地將它改回或改為其它能量形式,所以透過熱來發電是一種非常沒有效率的方法。例如高山上的水,對地面而言具有位能,我們原則上可以將它 100% 的改成電能,這正是水利發電的原理(其效率可以高達 90%);但如果我們讓它掉到地面變成熱,再用這些熱來發電或做功,那麼其效率就受到熱力學的限制,原則上再也不可能 100% 了(實用上均難以達到 50%):在改回其它能量形式的同時,一定要製造出一些廢熱(見圖)。不幸地,這正是內燃機(包括汽車引擎)和發電廠(包括核電廠)的操作方式,因此它們的效率都不高:燃煤電廠與核電廠的平均效率約為 33%,天然氣發電廠大約在 33% 至 43% 之間,內燃機的效率因類型和引擎的不同而變化很大(15%-45%),汽油引擎的效率只有 30% 到 35% 左右。

-----廣告,請繼續往下閱讀-----
圖/作者提供

註解

  1. 吉野彰(Akira Yoshino)、惠廷漢姆(Stanley Whittingham)、和古迪納夫(John Goodenough) 因發展鋰離子電池獲得 2019 年諾貝爾化學獎
  2. 特斯拉在 2020 年公佈了首個全年淨利潤,但這並不是因為向客戶銷售電動車的結果,而是美國有 11 個州要求汽車製造商在 2025 年之前銷售一定比例的零排放汽車,如果達不到,汽車製造商就必須從另一家滿足這些要求的汽車製造商購買「碳信用額(carbon credit)」——只銷售電動車的特斯拉成了這項政府規定的最大贏家。
  3. 現在約為 0.8 兆美元,市盈率高達 80 以上,通用汽車、福特則在 10 以下。
  4. 美國權威《消費者報告》的最新調查顯示,電動車的平均可靠性遠低於汽油動力車、卡車、和運動型多用途車。該調查發現 2021 年至 2023 年車型中的電動車遇到的問題比普通汽車多近 80%。
  5. 在政府大力支持下,中國已擁有地球上最廣泛的電動車充電基礎設施。
  6. 加油站因為有大量的易燃及爆炸的汽油,不能像充電站一樣沒有人守著,因此壞了不知道或不修理的機會應該不多。美國權威數據分析、軟體和消費者情報公司 J.D. Power 今年 5 月的一份報告謂:「截至 2023 年第一季末,使用公共充電樁的電動車駕駛員中有 20.8% 遇到過充電故障或設備故障,導致他們無法為車輛充電。」今年 12 月 3 日《華爾街日報》報導謂:「根據美國處理汽車維修保險索賠的 CCC 智慧解決方案公司的數據,去年發生事故後維修電動車的平均費用為 6,587 美元,而所有車輛的維修費用為 4,215 美元。」
  7. 但大多數需要 1 到 2 小時。充電速度快,將會縮短電池的壽命。
  8. 2023 年豐田 bZ4X 是該汽車製造商的首款量產電動車,也是目前該品牌提供的唯一的一款電動車。

延伸閱讀

我愛科學》(華騰文化有限公司,2017 年 12 月出版):收集筆者自 1970 年元月至 2017 年 8 月在《科學月刊》及少數其它雜誌所發表之文章。內含熱力學與能源利用、電動車值得發展嗎、混動汽車值得發展嗎、再談電動車值得發展嗎、如何有效地儲存電力、台灣應該發展電動車嗎、中國不適合發展電動車等等與本文有關的文章。

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 50 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

討論功能關閉中。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室