0

0
0

文字

分享

0
0
0

三種最值得學的速成說服話術

reBuzz 來報這
・2013/05/22 ・2358字 ・閱讀時間約 4 分鐘 ・SR值 498 ・六年級

談論之前 reBuzz 曾介紹過 有效說服人的三種講話藝術 ,而今天筆者要和大家分享對話中細微的語意特徵(semantic characteristics),簡單的一句話,除了影響著他人如何回應外,更決定著對方是否接受(compliance)你的請求。只要小小改變說話技巧,對方點頭的機率就會跟著大幅提升,讓我們來看看更多超實用的話術技巧吧!

說服話術一: 「即使一塊錢也…」

知道影響力六法則的人,想必聽過 Cialdini 的大名,他除了是心理學系教授,更是「Influence At Work」的總裁,一位說服、順從和談判領域的國際權威。他在 1976 年一個義捐活動上,意外地發現當告訴民眾「即使一塊錢也可以幫助我們」後,民眾捐款的金額比之前更高,同時也吸引了更多人投入捐款!

這個話術被稱為 ” even a penny will help ” ,自從它的效果被證實後,許多的募款活動也將它列入公關人員標準應對流程中。

說服話術二: 「我們會再多給你…」

你可能有過這麼一段經驗,某日閒逛時被一個攤販商品吸引住,正猶豫著是否下手時,攤販老闆突然主動提議買再送某某小東西,你覺得非常划算,並立刻掏出錢包買下。其實這個老闆運用了高成功率的說服技巧,以「時間差」來增加商品的超值感!

-----廣告,請繼續往下閱讀-----

來看看下面這個消費行為的說服研究:

Burger (1986) 建構了以下田野實驗:在街道上的一個烘培坊,隨機一位行人走了進去,對蛋糕有興趣並詢問了價格,店家會主動告知售價,此時出現了另外一位店內員工(已先串通好了),在兩人討論 5~10 秒鐘後,告知客人買蛋糕可以再多送兩塊餅乾,結果竟然有高達 73% 的人購買。但如果是相同售價,先組合好的小蛋糕+兩塊餅乾組合,卻只有 40% 的人願意購買。

看來善用此技巧可以為店家多帶來三成業績!這個說服技巧被命名為 “ that’s-not-all technique “。

回想看看小時候用塑膠尺打彈珠,即使你沒有任何連線,彈珠阿姨還是會微笑的送你一瓶「津津蘆筍汁」,沒想到輸了還有飲料可以解渴。其實它是「玩彈珠,附贈一杯飲料」的商品,只是如果一開始先給了你飲料,你反而會覺得玩彈珠浪費錢,下次自然也不會光顧了。

rebuzz-三種最值得學的速成說服話術

那要如何將 ” that’s-not-all technique ” 延伸到當紅的電子商務上?

-----廣告,請繼續往下閱讀-----

規劃網購的商品介面時,不妨將贈品擺放在頁面最下方,當瀏覽者看完商品價格及商品介紹後,再讓他注意到贈品訊息,這可是會比一開始就提供贈品的組合商品賣的更好喔。試著讓你的買家產生驚喜感吧!

說服話術三: 「你可以決定是否…」

讓對方感覺到自己有選擇權也是說服他人的重要關鍵 ( Kiesler, 1971 ),在前面談到的「即使一塊錢也…」技術也運用了此種技巧,在 Brehm 的抗拒理論( reactance theory )中談到,感覺到失去自由及選擇權反而會降低別人順從要求的可能。

這讓我想到了在當兵的時候,軍方 “一個口令一個動作” 的領導風格,當時同梯各種問題總是層出不窮,失去自由權強化了部屬抗拒行為,再以更高壓方式管理,負向循環造成軍中管理成效不彰。而這些弟兄回到了社會上,其實都沒有適應不良問題,抗拒行為往往只出現在高壓環境中。想要讓對方聽話,反而要給予對方自由選擇的權利!

那麼是否有關於操弄選權的話術研究呢?

-----廣告,請繼續往下閱讀-----

Nicolas (2000)在賣場中隨機尋找逛街的民眾,接著,一位實驗共謀者會走向這位民眾,並且禮貌的詢問「您好,不好意思,請問可以借我一點零錢搭乘公車嗎?」(聽起來非常像詐騙集團..)。而實驗組則是說「您好,不好意思,請問可以借我一點零錢搭公車嗎?但你可以選擇接受或拒絕沒關係」,注意到了嗎?實驗中並未提供任何其他誘因,他操弄的是對方的 “選擇權” 。

實驗結果非常驚人,對照組(未提供選擇權)只有 10% 的民眾願意贊助,而具有選擇餘地的民眾,竟有 47.5%  願意贊助車費!更有趣的是,後者所獲得的車費也比前者高出一倍多 ( $0.48 v.s. $1.04 ) 。

人們渴望自由選擇權

給予選擇自由的話術可以應用在幾乎所有的對話中,它已從 42 個相關研究中獲得證實,實驗人數更超過了 22,000 人。具體的說詞內容其實並不重要,重點是去強化對方無法說「不」的可能。而要達到這個效果,「自由選擇權」非常重要。

那麼會是什麼原因造成這種現象呢?第一,選擇權會引發對方拒絕後的罪惡感(feel guilty)、第二,它可能提高了個人社會責任感受(social responsibility)。

但筆者更偏好的是第三種解釋,它強化了內在歸因的可能(將行為歸因於內在特質)。怎麼說呢?當對方具有選擇的權力,並且在沒有壓力下做出決定時,他暸解到這個決定是發自內心,並非外力因素。而在被要求者作了內在歸因後,服從可能也會跟著大大提升(Gorassini, 1995)。

-----廣告,請繼續往下閱讀-----

這次談到的三個重要話術:「即使一塊錢也…」、「我們會再多給你…」以及「你可以決定是否…」,下次出去買東西時,留意一下店家使用的話術是否改變了你原先的決定!

如果你是賣家,不妨試試看這些話術(或是跟老爸老媽要零用錢時),將會帶來不錯的效果唷!

(資料來源:Nicolas, Evoacation Of Freedom And Compliance: The “But You Are Free Of…”, Crisp Volume 5, Number 18,  2000;圖片來源:Flickr@weltbild-schweiz  , CC Licensed)

◎推薦閱讀

reBuzz 來報這 專注於分享行銷與心理學、使用者行為、創新商業個案的分析文章,歡迎有興趣的朋友訂閱文章加入粉絲團,大家一起來交流!

-----廣告,請繼續往下閱讀-----
文章難易度
reBuzz 來報這
13 篇文章 ・ 1 位粉絲
reBuzz 來報這,由一群熱血的校園瘋子成立於2012年9月 (目前成員包含,台大、清大、元智等校研究生與媒體、網路業界人士),我們致力於開放存取(open access) 的學術應用與產業知識庫。希望能將學術界最頂尖的研究精華帶入商用實務界、並將國內外新創團隊與台灣校園創意散布給全世界,創造一個開放創新點子的資料庫與創業家的知識庫。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

9
5

文字

分享

0
9
5
「拜託」最好和右耳說:解密聽覺「右耳優勢」現象
雅文兒童聽語文教基金會_96
・2023/09/20 ・3827字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/謝耀文|雅文基金會 聽力師

聽覺,作為人類感知世界的重要途徑之一,一直是研究者感興趣的領域。這些年來左耳和右耳之間的聆聽差異性,逐漸受到人們關注。

2009年義大利的一項研究結果指出,當我們朝著他人的「右耳」提出請求時,往往會比較容易獲得成功。然而,有趣的是,在美國德州一所州立大學的學者卻提出了與之相異的論點,其研究指出當我們想要安慰他人時,應該靠近對方的「左耳」。這種截然相反的觀點讓人不禁追問,聽覺系統中的左右耳究竟有何不同?難道左耳和右耳聽到的聲音不一樣嗎? 

聽見聲音的奧秘

從解剖的角度來看,左耳和右耳的器官構造是對稱的(圖一)。我們的聽覺系統分為周邊和中樞兩個部分;外耳、中耳、內耳及聽神經的部分都屬於周邊,而從聽神經到大腦的區段則屬於中樞,整個聽覺系統運作是一個複雜而精巧的過程。首先,聲音最先被我們的外耳廓接收後,經過外耳道來到中耳,然後進入內耳。在內耳裡,聲音的震動被轉換為神經信號,再透過聽神經傳遞到我們的大腦,最終站則到達大腦中的覺皮質區。

當信號到達大腦時,我們才真正能夠聽到聲音。因此,正確來說,我們並不是用耳朵聽聲音,而是通過大腦來感知聲音並賦予聲音意義。

Anatomy of hearing
圖一:聽覺系統解剖圖。圖/entspecialties.com

大腦的不對稱性

多數生物的聽覺系統是對稱的,利用聲音傳到兩個耳朵的時間差和音量差,此足以應付當危險發生時,幫助留意周遭聲音的方向位置,如留意到警報聲或野獸的叫聲等做出反應。但是,人類隨著演化,大腦為了更有效率的處理複雜的聲音訊息,左腦與右腦發展出了不對稱性。

學者們普遍認為,左腦主要處理語言、邏輯推理等、而右腦則處理情緒、音樂等,說明左右大腦各有不同的優勢和專長(圖二)。正因如此,聲音進到我們的左耳和右耳時,會因負責處理的大腦半球不同,使得左耳和右耳所聽到的聲音處理上產生差異。這樣左右耳相異現象,最小在嬰兒的研究中,就被發現左耳和右耳天生對聲音的偏好有所不同。

https://topchurch.net/wp-content/uploads/2018/01/fig1-scaled.jpg
圖片二:左腦和右腦的差異。圖/topchurch.net

右耳優勢:從發現到機轉原因的探索

在聽力學上,右耳優勢是指當雙耳同時接收到語音訊息時,右耳的辨識能力優於左耳,也就是說,右耳對於聽取語音的正確率較高。最早於 1960 年代由 Kimura 教授發現。

為了解右耳優勢,研究者多透過雙耳異訊測驗 (Dichotic Listening Test)。測驗方式為讓受試者戴上耳機,左耳和右耳同時聆聽兩個不同的聲音,可能是句子或單字詞等。然後,他們被要求回想剛剛聽到的訊息,並分別判斷左耳和右耳的正確率。過往實驗結果皆顯示,聽力正常人的右耳的正確率普遍優於左耳。

根據現有的理論,這種現象可能與前述的大腦不對稱性有關。因為負責語言的區域主要位在左腦,所以右耳接收到的語音被認為多會直接傳遞到左腦,但左耳接收到的語音則是多先到右腦,然後還需藉由胼胝體將語音再跨傳至左腦去處理(圖三)。因此左耳聽到的聲音,需要多出這幾毫秒的時間差才會抵達左腦,使得右耳於生理上具備了先天利勢,能更快速且有效對語音進行辨識,造就右耳優勢。

https://almerja.net/medea/images/Capture_629.jpg
圖三:右耳接收到的語音直接傳到左腦處理,但左耳接收到的語音需先傳到右腦,再經由胼胝體跨傳到左腦去。圖/almerja.net

「右耳優勢」會隨著年齡改變

右耳優勢在正常聽力的成年人並不十分顯著。根據文獻,差異在 3-5% 以內。然而,在幼齡兒童身上,小時候右耳優勢相對較為顯著。過往有研究指出約要到 11 歲以後,隨著聽覺系統成熟後,兒童的表現才會接近成年人。

當研究對象轉向年長者時,普遍認為年長族群的表現會差於相對年輕的族群。然而,很多研究發現,當年齡增加,雙耳會有不等速的下降,通常左耳的正確率下降幅度會顯著高於右耳(圖四)。

意旨右耳優勢其實是源自於左耳的能力衰退,因此著名學者如 Jerger 等人,也將此現象稱作「左耳劣勢」。在台灣,陳小娟教授 2015 年的研究同樣指出,年長族群受試者中高達 95% 的人有左耳劣勢,但左耳下降的幅度個別差異很大。

一張含有 行, 圖表, 繪圖, 文字 的圖片

自動產生的描述
圖四:不同年齡族群於雙耳異訊測驗中,聽句子的百分比分數,紅色為右耳,藍色為左耳,詳細內容請見 Jerger J 等人 (1994)。圖/hearingreview.com

推論年長者左耳表現下降的成因中,與大腦中的「胼胝體」有關。因胼胝體功能是讓左右腦的訊息相互交流,所以當隨著年齡增長,胼胝體也會跟著受老化的影響,從而使左右腦間的訊息傳遞變得不夠高效,導致雙耳差異加劇。

右耳優勢的影響與意義

1. 聽覺中樞處理能力

不論年長者或兒童,當發現右耳優勢非常顯著時並非好事。根據美國聽力學會 2010 指引提出,當右耳優勢過於明顯或是缺乏右耳優勢時,被認為可能是聽覺中樞處理異常的指標,可能暗示著聽覺中樞系統老化衰退或是未發育成熟。

聽覺中樞處理異常最直接的影響可能是,明明聽得見聲音但卻聽不清楚。尤其在吵雜環境聽得更不理想。對於兒童來說,會阻礙其學習注意力,導致課堂上無法專心,或是把旁人的話當成耳邊風,導致學習困難,進而需要一些額外的聽覺輔具介入和教學策略來輔助。

2. 電子耳的植入耳選擇

對於聽損受損程度較嚴重的人來說,如果助聽器效益有限時,需評估電子耳的使用,然而選擇哪一耳植入電子耳也是有差別的。以色列的研究團隊指出,如果雙耳的聽力和結構相似的狀態下,他們發現右耳電子耳的語詞聽辨表現也有統計上優於左耳的情形,說明右耳優勢現象可能會對電子耳預後產生些影響。因此在左右耳條件相似的前提下,或許能做為選擇植入耳時的參考因素之一。

3. 1+1<2 助聽器選配

對於有聽力損失的人來說,使用助聽器雖能幫助矯正聽力,但當雙耳差異過大時,臨床上有些人戴助聽器,只會覺得助聽器聽起來很吵不清楚,或者更精確來說,會發現只戴單邊助聽器,居然比雙邊一起戴聽得更清楚;這樣的雙耳較不理想的表現,學術上被稱為「雙耳干擾」,意旨無法發揮 1+1>2 的雙耳效益;根據 2017 年的研究指出,雙耳干擾出現在將近 17% 的成年人。因此若留意到自己有聽沒有懂,或是用單耳聽比雙耳還要好時,可能不是錯覺。

4. 提升成功率的溝通小秘訣

雖然多數的右耳優勢研究是在受控的實驗室中進行,但有一項來自義大利的研究很不一樣,他們是在一間喧鬧的迪斯可舞廳進行。在這個實驗中,研究人員特意對 176 名參與者的左耳或右耳說話,然後詢問他們是否可以提供香菸。結果出乎意料,當朝著右耳提出請求時,88 名參與者中有 34 名同意提供香菸,但當朝著左耳提出請求時,只有 17 名參與者答應。這樣的結果或許也讓我們有理由相信右耳優勢在現實生活中能提供實質幫助,所以下次當我們需要與他人溝通重要的事情時,除了考慮時間、地點、環境等因素,或許也可以考慮面向哪個耳朵說話,這可能有助於提升溝通的成功率。

總結來說,左右耳各司其職,其中右耳被認為對語音的訊息處理較有效率,左耳則是對於非語音(如情緒、音樂)的訊息較敏感,這樣的差異反應出左右大腦的處理上各有所長,進而造就我們在聽取語音時的右耳優勢。然而,在成熟的聽覺系統中雙耳落差並不明顯,若當雙耳都聽得好時,才能最佳化我們的聽覺表現。因此建議要了解個別耳朵的聆聽狀況,並於發現問題時積極尋求耳鼻喉科醫師或聽力師諮詢,才能幫助後續聽力診斷,找出合適的處遇辦法。

參考資料

  • 陳小娟. (2015). 雙耳異訊測驗材料對於不同年齡者聆聽表現的效應. 中華心理學刊, 57(1), 27-43.
  • American Academy of Audiology(2010). Clinical Practice Guidelines: Diagnosis, Treatment and Management of Children and Adults with Central Auditory Processing Disorder.
  • Henkin, Y., Swead, R. T., Roth, D. A., Kishon-Rabin, L., Shapira, Y., Migirov, L., Hildesheimer, M., & Kaplan-Neeman, R. (2014). Evidence for a right cochlear implant advantage in simultaneous bilateral cochlear implantation. The Laryngoscope, 124(8), 1937–1941. https://doi.org/10.1002/lary.24635
  • Henkin, Y., Taitelbaum-Swead, R., Hildesheimer, M., Migirov, L., Kronenberg, J., & Kishon-Rabin, L. (2008). Is there a right cochlear implant advantage?. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 29(4), 489–494. https://doi.org/10.1097/MAO.0b013e31816fd6e5
  • Jerger J. The remarkable history of right-ear advantage. Hearing Review. 2018;25(1):12-16.
  • Jerger, J., Chmiel, R., Allen, J., & Wilson, A. (1994). Effects of age and gender on dichotic sentence identification. Ear and hearing, 15(4), 274–286. https://doi.org/10.1097/00003446-199408000-00002
  • Kieth, R. W., & Anderson, J. (2007). Dichotic listening tests. In F. E. Musiek & G. D. Chermak (Eds.), Handbook of (central) auditory processing disorders, vol. 1: Auditory neuroscience and diagnosis . San Diego, CA: Plural.
  • Kimura D. (2011). From ear to brain. Brain and cognition, 76(2), 214–217. https://doi.org/10.1016/j.bandc.2010.11.009
  • Marzoli, D., & Tommasi, L. (2009). Side biases in humans (Homo sapiens): three ecological studies on hemispheric asymmetries. Die Naturwissenschaften, 96(9), 1099–1106. https://doi.org/10.1007/s00114-009-0571-4
  • Mussoi, B. S. S., & Bentler, R. A. (2017). Binaural Interference and the Effects of Age and Hearing Loss. Journal of the American Academy of Audiology, 28(1), 5–13. https://doi.org/10.3766/jaaa.15011
  • Sim, T. C., & Martinez, C. (2005). Emotion words are remembered better in the left ear. Laterality, 10(2), 149–159. https://doi.org/10.1080/13576500342000365
  • Sininger, Y. S., & Cone-Wesson, B. (2004). Asymmetric cochlear processing mimics hemispheric specialization. Science (New York, N.Y.), 305(5690), 1581. https://doi.org/10.1126/science.1100646
雅文兒童聽語文教基金會_96
57 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。