Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

有機耕種在馬鈴薯蟲害抗戰上傳出捷報

陸子鈞
・2011/05/20 ・672字 ・閱讀時間約 1 分鐘 ・SR值 566 ・九年級

一項發表在《Nature》的研究指出,有機農業比起傳統農業更能對抗蟲害,並種出更大的作物。這重新點燃了長久以來在有機農業及傳統農業之間的爭論,也突顯出經常被忽略的生物多樣性。

該研究的作者,昆蟲生態學家David Crowder表示:「我們的研究並不是告訴農夫必須改採有機耕作。我們的研究指出的是有機耕作能促使天敵間的平衡,而達到更佳的蟲害控制效果」。

過去的研究很強調物種數量及豐富度,但Crowder的團隊顯示「均質度」(evenness)-物種間相對豐富度的關係的重要性。均質度不只是量化不同物種出現的頻率,還有物種之間的分布數量是否相同。研究的對象是會攻擊科羅拉多馬鈴薯甲蟲(Leptinotarsa decemlineata)的一些蟲子、線蟲和真菌。

研究團隊將從華盛頓馬鈴薯園收集來的資料,利用整合分析(meta-analysis)後發現,在有機農場及傳統農場的馬鈴薯甲蟲豐富度沒有明顯的差異,但天敵的均質度卻大大的不同;在只使用少數人造化學物質的農場,比起普遍使用殺蟲劑的傳統農場,有更高的均質度。

-----廣告,請繼續往下閱讀-----

此外,研究團隊還設計了一項田野實驗,他們調整了捕食者的均質度。提高均質度的結果,引發研究人員稱為「強大的營養流洩」,使取食馬鈴薯的甲蟲密度減少18%,並種植出比原來大35%的馬鈴薯。

群落生態學家Marc Cadotte認為「均質度是生物多樣性中重要的一環」,了解均質度有助於研究生物多樣性,比方維持物種數量的過程,還可以了解當生態系面臨像氣候變遷的挑戰時,所作出的反應。

Crowder下一步要釐清,有機農作為什麼會促進均質度?還有,這個現象是否也可以應用於馬鈴薯田以外的系統。

資料來源:NatureNews: Organic farms win at potato pest control [30 June 2010]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
0

文字

分享

1
4
0
風調雨順的地區,受災風險比較大?——印度農村的經濟學課
研之有物│中央研究院_96
・2023/04/15 ・4114字 ・閱讀時間約 8 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/呂慧穎
  • 責任編輯/田偲妤
  • 美術設計/蔡宛潔

每到颱風天或寒流來襲,農作物損害的新聞常攻佔各大版面。在極端氣候影響下,農民需承擔的受災風險加劇!我們常羨慕氣候條件相對穩定的地區,但該處的受災風險真的比較小嗎?

中央研究院「研之有物」專訪院內經濟研究所莊雅婷助研究員,以世界糧食出口大國印度作為研究田野,剖析降雨量的變化對不同地區、不同類型農民的生計影響。跟著莊雅婷走一趟印度農村,以經濟學視角探索意想不到的農村經濟樣貌!

中研院經濟研究所莊雅婷助研究員,專長為環境經濟學、行為經濟學、發展經濟學。圖/莊雅婷

聯合國政府間氣候變遷專門委員會(IPCC)於 2022 年發表最新《氣候衝擊、調適與脆弱度報告》(Climate Change 2022: Impacts, Adaptation and Vulnerability),當中指出如在 2030 至 2052 年間失守 1.5°C 溫升防線,世界各地將面臨多重氣候災害,導致自然環境難以修復的局面。

-----廣告,請繼續往下閱讀-----

在第 27 屆聯合國氣候變遷大會(COP27)中,多國持續響應 2050 年全球淨零排放目標,聯合國更重申人類社會必須強化面對極端氣候的調適能力,透過跨領域的資訊共享與合作,建立環境、經濟、社會等各面向韌性。

在各類生產者中,看天吃飯的農民最擔心極端氣候影響收成,農產歉收也將導致糧食短缺、物價上漲,並影響民生經濟。因此,了解氣候變遷對農民的影響,有助及早研擬因應對策。

中研院經濟研究所莊雅婷助研究員以環境經濟學為研究方法,選擇印度作為實證區域,研究降雨量的變化對不同地區、不同類型農民的生計影響,從中探索農民因應天災所發展出的生存之道。

印度農民接受莊雅婷訪談,分享面對降雨衝擊時有何生計調整策略。圖/莊雅婷

農業收益的重要指標

印度是世界糧食出口大國,廣大的國土包含熱帶、亞熱帶、溫帶等不同氣候風貌,再加上各省份的風俗民情各異,塑造出多樣的地理環境、天氣型態及文化特色,有利降低研究取樣上的偏差。

-----廣告,請繼續往下閱讀-----

此外,印度在 1970、1981 及 1998 年進行了大規模的農業人口普查,對於各種農業及非農業收入有詳細的統計數據。

莊雅婷共採用 230 個村莊、30 年跨度的印度農業人口普查數據,以及美國德拉瓦大學(University of Delaware)氣候研究中心 1900 至 2008 年蒐集的印度月降雨量和月均溫數據,並請益農業氣候科學家後得知:

6 月平均氣溫、6 至 9 月季風降雨(雨季)是影響印度農作收成的關鍵時期,而「溫度」及「降雨量」是科學家了解氣候變遷如何威脅農業收益的重要指標。

經統計 1970、1981、1998 年印度農業普查數據,繪製之印度季風降雨(雨季)情形分布圖,雨季的平均降雨量為 823 毫米,廣大的國土包含不同的天氣型態。圖/研之有物(資料來源|莊雅婷)

其中,美國德拉瓦大學氣候研究中心數據的優點是,能透過經緯度比對地理區位及空間資料,運用當期降雨量與 20 年歷史氣候資料同期平均值之偏差值,來表示當年雨量與歷史趨勢的差異。

此外,為了確定農民收入與氣候條件之間的連動性,排除與其他變因的交互影響,研究中設定的固定變因包括:家庭規模、村莊人口、戶主年齡及教育程度、農業經驗及替代技能等;環境固定變因則包括:種植模式、土壤類型、村莊特性及農村到城市距離。

-----廣告,請繼續往下閱讀-----

藉由上述變因設定,控制非農業工作的可及性、不同區域勞動價格的內生變因,降低歷史天氣模式與非農業收入的交互影響。

降雨量如何影響農民

印度研究人員進駐網路不發達的農村後,以土法煉鋼方式測量年降雨量。其中一處農村的年降雨量(1986-1995、2001-2009)最少 248.4 毫米、最多 981 毫米,落差之大不但影響農業收入,也連帶影響農民的生計策略。圖/莊雅婷

臺灣諺語常以「風頭水尾」形容農業條件欠佳的環境,令人好奇的是,對比長年風調雨順的地區,哪類環境下的農民較能調適氣候變遷帶來的威脅?

莊雅婷發現,與以往研究結果類似之處在於,降雨量的變化對印度農民的農業收入有顯著影響,而農民傾向透過收入多樣化來調適降雨衝擊(rainfall shock)。

然而,在分析歷史降雨量變化並實地訪談後卻有意外發現:

-----廣告,請繼續往下閱讀-----

歷史降雨量變化較小的地區,雖有氣候穩定優勢,一旦降雨驟變,農業收入與總收入的下降程度卻遠高於降雨量變化大的地區!

莊雅婷進一步根據土地大小及經濟規模,將農民分成:有自耕地的大農、中農、小農,以及無自耕地的農民,並初步分析 4 類農民面對降雨衝擊的收入狀況。

大農與中農通常具備較佳的經營管理能力與資源,例如能建置完善的儲水灌溉系統,因而農業收入雖受到降雨衝擊,但下降程度不大。

小農在一般情況下,靠著耕作小規模農地過著自給自足的生活,但相對缺乏其他替代收入,一旦面臨降雨衝擊,收入反而下降最多。

無自耕地的農民類似臺灣租地耕作的佃農,在農作收入較不穩定的情況下,已習慣兼差非農業工作貼補家用,比方投入村莊附近的建築營造工作。因此,在面對降雨衝擊時,較能迅速調整工作型態,收入下降程度比小農低。

-----廣告,請繼續往下閱讀-----
4 類農民面對降雨衝擊的收入狀況。圖/研之有物

以往的農業輔導政策較常聚焦在氣候變遷劇烈、生產條件不佳的地區,但莊雅婷的研究指出:

過去氣候條件穩定、甚少災荒澇旱的地區,反而容易受到氣候變遷的影響,其弱點在於農民缺乏應變經驗,難以在短時間內應對氣候變遷帶來的生計衝擊。

至於歷史降雨量變化較大的地區,多數農民已藉由代代相傳的生活經驗,建立起農業以外的收入來源、工作技能與求職人脈,降低氣候不佳對收入的影響。

該研究點出過往農業政策忽略之處,提醒在強化氣候變遷適應力的準備工作中,應考量農民行為與當地歷史氣候條件的交互影響,引導農民保有居安思危的觀念,及早研擬因應氣候變遷的對策。

現地訪談找真相

莊雅婷不僅從事歷史數據的量化分析,更實際前往田野訪談印度農民、收集第一手資料。圖/莊雅婷

大膽假設、小心求證,向來是做研究應秉持的原則。莊雅婷在進行量化分析時,也輔以工作坊、現地訪談等方法,過程中不僅獲得許多設立假說的靈感,更能得到深入剖析社會現象的觀點。

-----廣告,請繼續往下閱讀-----

在印度進行田野調查時,恰巧其他印度研究團隊也在同一區域進行農民收入調查,兩方同時觀察到:當時年不佳時,大農地主通常以低於平時的工資雇用農民。

印度研究團隊認為,這是大農地主趁機剝削受雇農民,但莊雅婷在訪談農民後卻得到完全相反的答案。

原來這是地區社群的互助默契,大農地主在乾旱或澇災時提供工作機會,受雇農民也願意在農作欠收時降低工資,彼此相互體諒、一起度小月。

如何不帶偏見探討現象背後的成因,是莊雅婷走入田野時經常自我提醒的一點。

-----廣告,請繼續往下閱讀-----

走進田野的經濟學家

中研院經濟研究所莊雅婷助研究員。圖/研之有物

在偌大的經濟學領域中,莊雅婷選擇環境經濟學、發展經濟學、行為經濟學作為研究領域。在求學過程中了解到環境對人類行為的影響力,藉由分析個人和群體的經濟行為後,能將統計數據回饋到政策執行面上,有助改善環境和社會管理方式。

「經世致用」是經濟學有趣迷人之處,更讓莊雅婷維持源源不絕的研究熱情!

回憶起與印度的不解之緣,源自在印度工作半年多期間,接觸到發展中國家的實際狀況,親眼見到當地貧富差距之大,讓莊雅婷在心中埋下關心貧窮議題的種子。

就讀碩士班期間,在柬埔寨進行農村貧戶家計與微型貸款研究時,更聽聞無力擺脫貧窮的家庭想將女兒送給同行的美國研究人員,此舉讓她深受震撼!「我總會自問:我的研究能為當地人帶來什麼幫助?」

因著生命中的種種機緣,莊雅婷將研究能量聚焦在環境、貧窮及性別等具公益性的議題上,隻身前往東南亞多國農村進行研究,這不僅要抱持不怕困難的勇氣,更培養出因地制宜的反應力。

要在人生地不熟的異國做研究並不容易,需要與熟悉當地生態的「地頭蛇」建立良好關係,再經由他們連結在地人脈,讓農民願意暫時放下手邊工作來配合訪談。

莊雅婷曾遇到一位退休的老先生願意不收分文擔任翻譯,只因得知有遠自臺灣來的朋友,想要傾聽這群無名小農的故事。

一路走來並非總是一帆風順,但喜歡與人交流的莊雅婷牢記每一次與受訪者互動的美好經驗。對研究的熱情、人們釋出的善意,使她面對各種艱難挑戰時,得以發揮超強耐力,更是疲憊至極時「滿血復活」的最佳養分。

2018 年美國耶魯大學經濟學教授諾德豪斯(William D. Nordhaus)、紐約大學經濟學教授羅默(Paul Romer)以總體經濟學模型,找出氣候變遷與經濟成長的關係,同獲諾貝爾經濟學獎。在此之前,誰能料到「環境經濟學」會成為一門顯學。

這讓莊雅婷相信,在研究領域中無需為了追求潮流而惶惶不安,重要的是堅持自己的初衷,盡心耕耘終能有所收穫!

隻身前往印度田調並不容易,莊雅婷憑著對研究的熱情、當地人的支持,從中獲得許多設立假說、剖析社會現象的觀點。圖為拜訪印度當地女性存錢互助會,訪問微型貸款相關政策。圖/莊雅婷

延伸閱讀

  1. 莊雅婷老師個人網站
  2. Yating Chuang (2019). “Climate Variability, Rainfall Shocks, and Farmers’ Income Diversification in India”. Economics Letters, 174: 55-61.
-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
3

文字

分享

0
2
3
COP 15 閉幕之後,臺灣生物多樣性工作該如何推展?——《科學月刊》
科學月刊_96
・2023/03/05 ・3970字 ・閱讀時間約 8 分鐘

  • 李玲玲/臺灣大學生態學與演化生物學研究所教授。

Take Home Message

  • 《生物多樣性公約》(CBD)根據定期舉辦的締約方大會(COP)決定執行工作,以達成全球生物多樣性目標。
  • 去(2022)年底的 COP 15 訂下新的策略計畫與目標,以接續COP 10未完成的工作。雖更全面和具體,但未來成敗仍取決於執行狀況。
  • 臺灣過去在 CBD 的目標上有所貢獻,然而政府對 CBD 重視的程度仍不及國際公約,應繼續滾動修正並將生物多樣性納入主流。

任何關心生物多樣性現況與未來的讀者都需要了解《生物多樣性公約》(Convention on Biological Diversity, CBD)的內容與它的發展。這份在 1993 年正式生效、具有法律約束力的國際公約,目前有 196 個成員(締約方),它們共同承諾且致力於達成三項主要目標:保育生物多樣性、永續利用生物多樣性,以及公正合理分享由利用遺傳資源(genetic resources)所產生的惠益。

《生物多樣性公約》的運作

和其他國際性公約組織的運作方式類似,CBD 依據定期舉辦的締約方大會(Conference of Parties, COP)所通過的決定執行各項生物多樣性工作,並以大約每十年一期的間隔檢討生物多樣性工作的執行狀況,滾動修正下一個十年預計推動的整體策略計畫與目標。同時鼓勵締約方配合修正與執行各國的國家生物多樣性策略計畫(National Biodiversity Strategies and Action Plans, NBSAP),藉此協調眾國的努力以達成全球生物多樣性目標。因此每十年一次的策略規劃與目標設定都是一個里程碑,締約方需要檢視、累積過去成功與未能成功的經驗與教訓,調整步調使下一階段的執行成果能更接近理想目標。

例如 2002 年第六屆締約方大會(COP 6)通過了該公約的 2002~2010 年策略計畫和「2010生物多樣性目標」,預期到了 2010 年時能顯著減緩生物多樣性的流失速度,並在兩年後的COP 7通過了「2010生物多樣性目標」的 11 項具體目標與 21 項次目標。而在 2010 年的 COP 10 則在檢討「2010生物多樣性目標」的進展與缺失後,通過了「2011~2020年生物多樣性策略計畫與愛知生物多樣性目標」(以下簡稱愛知目標),設定出 20 項要在十年內達成的目標。

-----廣告,請繼續往下閱讀-----

2020 年原本預計舉辦 COP 15 檢討執行成果、滾動修正,並提出 2021~2030 年的策略計畫與目標,但卻因嚴重特殊傳染性肺炎(COVID-19)疫情在全球升溫,策略計畫草案工作小組、各締約方與民間團體代表的會前協商討論無法順利進行,使得策略計畫草案的內容遲遲無法定案,最終就連 COP 15 也無法如期舉辦。會議時間不斷地延後,直到 2021 年才決定將 COP 15 分兩階段召開,第一階段的會議在 2021 年 10 月 11~15 日以線上與實體並行方式進行,重點是決定 CBD 的預算;第二階段的會議又因疫情經過兩次延宕,終於在去(2022)年 12 月 7~19 日完成實體會議。

延期數次的 COP 15 會議,最後在 2022 年 12/7-12/19 進行。圖/envatoelements

有進展卻未達目標?過去的執行情況及COP 15 的新目標

檢視全球生物多樣性的狀況與檢討各期生物多樣性策略計畫與目標進展的主要依據是「全球生物多樣性展望」(Global Biodiversity Outlook, GBO),也就是 CBD 定期出版的報告。它總結了各方和各區域、國家新發布的生物多樣性研究與評估資料,呈現出全球生物多樣性的狀況與趨勢,並提出需要採取行動的綜合證據與建議,供CBD相關決策和制定新的策略計畫與目標參考。

2020 年出版的 GBO 5 指出,20 項愛知目標中有 10 項目標進展顯著,有六項目標可算部分實現,包括實行良好漁業管理的地區,海洋魚類族群豐度得以維持或恢復(目標6);成功清除外來入侵種的島嶼數和鎖定優先處理的外來入侵種進入途徑以避免再度入侵的案例數增加(目標9);2000~2020 年,陸域保護區面積從 10% 增加到 15%,海洋保護區面積從約 3% 增加到 7% ,同時對生物多樣性具有特別重要意義區域的保護也從 29% 增加到 44% (目標 11);《名古屋議定書》(Nagoya Protocol已在至少87個國家和國際間充分運作(目標 16);170個國家已根據《2011~2020年生物多樣性策略計畫》更新了 NBSAP (目標 17);各界可獲得的生物多樣性資料和資訊大幅增加(目標 19);透過國際資金流動使生物多樣性可用財務資源加倍(目標 20)。然而整體而言,全球生物多樣性仍在流失中,沒有任何一項愛知目標被完全實踐。

根據 GBO 5的總結及針對諸多未達標的分析所提出的改善建議,再經過多方的諮詢、協商、討論,甚至辯論,COP 15 終於通過了雖不能讓所有締約方滿意,卻勉強能接受的「昆明-蒙特婁全球生物多樣性框架」(Kunming-Montreal Global Biodiversity Framework, GBF)作為 2022~2030 年全球推動生物多樣性工作的依據。

-----廣告,請繼續往下閱讀-----

GBF 的內容涵蓋了《 2050 年願景》和《 2030 年使命》,以及希望在 2030 年能夠實現的 23 項目標。這 23 項目標可歸類為:減少對生物多樣性的威脅(目標 1~8)、透過永續利用和惠益分享滿足人們的需求(目標 9~13)以及執行和使生物多樣性主流化的工具和解決方案(目標 14~23)。希望在未來十年(到 2030 年時)逐步減緩生物多樣性喪失的趨勢,並在往後的 20 年扭轉此一現象,改善生物多樣性、恢復自然生態系,以實現 2050 年「一個與自然和諧相處的世界」的願景。

根據長期觀察 CBD 發展的媒體分析:除延續愛知目標中尚待達成的目標外,GBF 比愛知目標更包容、更全面、具體,但也更複雜。特別是目標 2 和 3 比以前的目標更具企圖心,分別是到 2030 年前確保至少 30%的退化陸地、內陸水域、沿海和海洋生態系得到有效恢復(愛知目標是 15% );以及透過保護區和其他有效的區域保護措施,有效保護 30% 的陸地、內陸水域、沿海和海洋區域(愛知目標分別是陸域17%、海域 10%)。

GBF 目標2和3企圖確保 30%退化陸地、內陸水域、沿海和海洋生態系得到有效恢復。圖/envatoelements

而目標 12 增加城市地區藍綠空間面積並改善它們的品質與生態連通性;目標 15 要求大型跨國公司和金融機構對業務、供應和價值鏈及投資組合監測、評估和透明地披露風險、依賴性和對生物多樣性的影響,均是愛知目標沒有提到的項目;目標 19 則有更明確、量化的資源調動目標。此外,COP 15 還為了配合GBF通過相關的指標與監測架構、能力建構和發展的長期策略框架等決定,以及規劃、監測、報告和審查的機制,以利締約方執行。但無論 GBF 的內容如何,成敗仍取決於未來實際的執行狀況。

臺灣生物多樣性的目標與執行,跟得上國際公約嗎?

臺灣雖非 CBD 締約方,但行政院自 2001 年通過《生物多樣性推動方案》以來,相關單位皆持續追蹤 CBD 的進展,並檢視國內生物多樣性狀況,先後於 2007 年與 2015 年依據《 2010 生物多樣性目標》與愛知目標,滾動修正臺灣 NBSAP 的內容,並透過 22 部會共同執行,至今已有相當豐碩的成果。對大部分愛知目標的達成也都有所貢獻,包括減緩棲地流失(目標 5)、保護脆弱生態系(目標 10)、保存基因多樣性(目標 13)、更新 NBSAP(目標 17),以及累積、分享、應用生物多樣性資訊與知識(目標 19)等,其餘各項目標大都有程度不一的進展,唯有目標 16(遺傳資源的獲取與惠益分享立法)與目標 20(增加生物多樣性工作的預算比率)較無進展。

-----廣告,請繼續往下閱讀-----

然而在國際間紛紛倡議加強保護自然以達成全球永續發展目標、氣候變遷減緩與調適、巴黎協定等目標的同時,臺灣政府對 CBD 重視的程度遠不及氣候變遷綱要公約。無論在國家永續發展目標、氣候變遷減緩調適、淨零排放、水資源管理、防減災等重要政策的推動上,生物多樣性可以扮演的角色與可以發揮的潛力卻嚴重被忽視。投入生物多樣性工作的人力與資源更遠不足氣候變遷相關事務,包括政府尚無具體的生物多樣性監測架構,也從未評估整體生態系服務,因此仍無法掌握生物多樣性與生態系服務變化的趨勢,以及變化趨勢對達成上述各項重要政策的影響。

因此在 GBF 定案後,臺灣除了需要繼續依據 GBF 滾動修正 NBSAP 的內容外,還需注意以下重點: 

  1. 深刻了解維護與改善生物多樣性與生態系服務對於提升人類福祉、氣候變遷減緩與調適及達成永續發展目標的重要性,並將它主流化。也就是說,需改變公私部門以往「將生物多樣性只視為自然保育部門業務」的錯誤認知。在規劃和執行與永續發展目標、氣候變遷減緩調適、淨零排放、綠能、國土計畫、水資源、防減災等重要政策、策略、行動時,應納入維護、改善生物多樣性與生態系服務的思考,同時注意部門間縱向與橫向的協調整合,以及從中央政策規劃到地方落實執行的連貫性,以協調一致的方式推動生物多樣性相關工作。
  1. 落實維護良好的生態系、恢復退化的生態系以逐步達成 CBD 2030 目標及 2050 年願景。「維護良好的生態系與恢復退化的生態系」是 GBF 目標 2 與 3 的重點,也是聯合國將 2021~2030 年定為生態系恢復十年、並鼓勵各國致力於恢復劣化生態系、增加自然資產與強化生態系服務,以提升人類福祉的目的。然而臺灣的農田、淺山、流域、海岸、海洋生態系仍持續劣化中,從中央到地方都輕忽生態系維護與恢復的重要性。此方面的工作應是後續 NBSAP 特別需要加強的工作。
  1. 無論永續發展目標或是生物多樣性目標的達成,都需要政府和全社會進行必要的變革,包含確定生物多樣性與國家發展目標的關聯,將自然的價值內化,並依此規劃整合性策略、優先行動,盡快調整相關政策、法規、制度、組織,合理分配財務和其他資源,加強能力建設、研發適當的政策工具。

註解:

  • [註1]根據 CBD 第二條,遺傳資源是指具有實際或潛在價值的遺傳材料;遺傳材料則是指任何植物、動物、微生物或其他來源中含有遺傳功能的材料。
  • [註2]《名古屋議定書》的全名為「關於遺傳資源獲取與公平平等分享使用惠益的名古屋議定書」,是 CBD 的第二份議定書,目的在以公平合理的方式分享對遺傳資源的利用所帶來的惠益。
  • [註3]詳見閱讀 GBF 目標內容:https://www.toolskk.com/qrcode-scanner
  • [註4]詳見閱讀「2020 生物多樣性國家報告」:https://reurl.cc/ZXQ1zV
  • 〈本文選自《科學月刊》2023 年 3 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3741 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。