Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

魔術師的小撇步:曲線動作較易誤導觀眾

哇賽心理學_96
・2013/04/24 ・735字 ・閱讀時間約 1 分鐘 ・SR值 518 ・六年級

編譯 / 文蒨
編輯 / PanSci z編

魔術師的左手上拿著一枚硬幣,右手伸過去拿硬幣再收回來,接著右手攤開──嘿,沒有硬幣!其實硬幣從頭到尾都在左手中,只是魔術師流暢的動作會讓人認為右手取走了硬幣罷了。

專業魔術師阿波羅.羅賓斯(Apollo Robbins)透漏,他能用一點技巧改變觀眾的注意力來完成他的魔術,訣竅就在於手的移動方式-若是動作以直線移動,觀眾會只注意起點和終點,忽略過程;相反地,如果動作以曲線移動,觀眾的視線則會跟隨動作並停留在移動的那隻手上,此時,另一隻手的動作就比較不會被注意到。

為了證實羅賓斯的技巧,專長研究魔術和錯覺、美國巴羅神經學研究所(Barrow Neurological Institute)的康帝馬丁尼茲(Susana Martinez-Conde)博士找來羅賓斯,請他以法蘭西式藏幣法(French Drop,或譯為「法式落下」)測試受測者。每個受試者要觀看羅賓斯四次表演,前兩次會在魔術師打開手掌前結束,並詢問受試者認為硬幣在哪一手中;而後兩次則會讓整個魔術完成,再詢問受試者認為魔術師如何做到。實驗時魔術師的動作在前兩次和後兩次分別隨機前後以曲線和直線執行,而在實驗中受試者會配戴眼球運動追蹤器以測量並記錄他們眼睛注意的位置。

-----廣告,請繼續往下閱讀-----

法蘭西式藏幣法 

實驗結果顯示,曲線移動會誘使受測者的眼球追蹤物體,直線移動則會使眼球以跳視(Saccadic)的方式,從動作起點跳到終點。證明了羅賓斯的說法。

除了破解魔術師的祕密,康帝馬丁尼茲認為眼球受不同移動方式吸引也有其他應用,像是在自然界中的狩獵追蹤、軍隊的戰術應用、體育競賽中或者行銷的技巧。

資料來源:Discoveries Into Perception Via Popular Magic Tricks. Science Daily [May 22, 2012]

-----廣告,請繼續往下閱讀-----

研究文獻:Otero-Millan J, Macknik SL, Robbins A, McCamy M and Martinez-Conde S (2011) Stronger misdirection in curved than in straight motion. Front. Hum. Neurosci. 5:133. doi: 10.3389/fnhum.2011.00133

轉載自 心理與睡眠教學網

-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
掌控注意力與動機:終結找不到東西的困擾!——《記憶決定你是誰》
天下文化_96
・2024/08/03 ・1563字 ・閱讀時間約 3 分鐘

為什麼我們總是找不到鑰匙?

讓我們想像一個日常中會發生的情況。你下班回家,用手機確認電子郵件,同時把鑰匙插入鑰匙孔,打開大門。你踏入家中,家裡那隻不久前才認養、還沒訓練好規矩的好動小狗撲過來,纏著你跳來跳去,搞得你身上沾滿狗兒的口水。

你聽到女兒的房間大聲傳出卡加咕咕樂團(Kajagoogoo)的歌曲,一小段極易琅琅上口的重低音合成流行音樂鑽進你的腦門。你疲憊的走進廚房,裡面有股腐臭味,告訴你昨晚忘記把垃圾拿出去。然後,忽然一個抽痛,提醒你要冰敷幾週前扭傷的腳踝。

現在,不要轉頭,試著回想你把鑰匙放在哪裡。如果你想起自己把鑰匙留在鎖孔上,那很好,但如果實在想不起來,你也並不孤單。你可能只是被太多事情轉移了注意力,一旦有一大堆訊息襲來,我們對單一事件的記憶會變得混亂。

有時候就是無法想起自己將物品放在哪裡。 圖/envato

更糟的是,當我們試圖回想自己最後把鑰匙放在哪裡時,會一一過濾各式記憶,包括自己以前曾放置鑰匙的所有地方,以及我們把鑰匙放在各個地方的各種不同情況,不管那些事件是發生在昨晚、上個星期,甚至去年。會有很多這樣的干擾,所以諸如鑰匙、手機、眼鏡、皮夾,甚至車子等常用的東西,我們經常忘記它放在哪裡。競爭的記憶那麼多,能夠記住這些東西放在哪裡才奇怪。

-----廣告,請繼續往下閱讀-----

破解記憶混亂:注意力如何幫助你記住重要細節

試著把記憶想像成一張桌子,上面雜亂的放滿皺皺的紙片。如果你把網路銀行的密碼隨手抄在這種紙片上,要重新找到這張紙片,不僅需要耗費一番努力和運氣,同時也在挑戰你的記憶力。這類經驗就像艾賓浩斯努力背誦的無意義三字母組,要找到當下所需的正確記憶,難度會不成比例的增加。

但如果你把密碼寫在一張亮眼的桃紅色便利貼,要找到就變得格外容易,因為桃紅色便利貼會從桌上所有其他紙片之中凸顯出來。記憶以同樣的方式運作。愈特殊的經驗愈容易記得,因為它會從所有其他記憶裡凸顯出來。

愈特殊的經驗愈容易記得,就像一張亮眼的便條紙。 圖/envato

那麼,要如何使記憶從我們堆滿雜亂事物的腦袋中凸顯出來呢?答案是「注意力」和「動機」。利用注意力,大腦能把我們看到、聽到、想到的事情提高優先順序。我們隨時都可能把注意力放在四周的諸多事物上,而環境裡發生的事情常常會吸引我們注意。

在前面描述的假想情況中,你的注意力可能短暫的放在鑰匙上,接著注意力就被門打開後遇到的許多事情給轉移。即使你留意著應該記住的重要事物(一小時後得去機場接妻子,你需要那串鑰匙,否則會遲到),也不見得能幫你建立特殊的記憶,足以對抗各式各樣吸引你注意的干擾(好動的狗、廚房裡的垃圾臭氣,或女兒房間傳出的樂團聲音)。

-----廣告,請繼續往下閱讀-----

這就是「動機」登場的時候了。你需要利用動機來引導注意力,讓注意力鎖定在某個特定的事物上,好製造一個之後能找得到的記憶。下次你放下鑰匙這類經常找不到的東西時,花一點時間專注在當時和當地的某個獨特事物,例如檯面的顏色,或鑰匙旁邊那疊未拆封的信件。只要一點點專心的動機,就能對抗大腦忽略日常事件的天性,建立較為明顯的記憶,如此便有機會戰勝那些干擾的喧囂。

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
集中注意力就不會犯錯嗎?注意力超集中,大腦反而會忽略細節!——《我是誰》
啟示
・2022/11/08 ・1563字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們的注意力若是集中在某個事物上,我們的腦部往往完全不會顧及其他東西,就算這些東西可能非常愚蠢,愚蠢到其實我們應該注意到的才對。

注意力集中的實驗:大猩猩服裝實驗

關於這樣的情況,伊利諾大學香檳分校的心理學家丹尼爾.賽蒙斯(Daniel Simons)和哈佛大學的克里斯多夫.查布里斯(Christopher Chabris)所拍攝的影片,著名的「大猩猩服裝實驗」,就是個很好的例子。

影片中有兩隊人面對面地玩球。一隊穿著白色衣服,另一隊穿著黑色衣服。兩隊各有一顆球,都傳球給自己的隊友,傳球的時候總是讓球先落地然後彈起。這時安排一個人數不少的測試組來觀看這段影片,他們的任務是計算白隊的球一共落地彈起了多少次。

計算白隊一共傳了幾次球。影/Youtube

大部分的受測者都能毫無問題地完成任務,說出正確的次數。然而測試員還想知道別的,也就是觀眾們是否注意到了任何不尋常的東西。一半以上的受測者均給予否定的答案。直到他們第二次再看影片且不去專心計算時,才驚訝地發現影片中有一個穿著大猩猩服裝的女人拖著腳步穿過畫面,停在畫面中央學著猩猩捶胸。

-----廣告,請繼續往下閱讀-----

而大多數的觀眾由於太過專注在「計算次數」這件事上,因此竟完全沒注意到這隻大猩猩! 心理學家以同樣的實驗要求另一組受測者計算黑隊的球落地數,結果也有三分之一的人沒注意到大猩猩。這名喬裝的女人之所以較能吸引黑隊觀眾的目光,是因為大猩猩的服裝也是黑色的。

這段影片是一個很明顯的例子,說明我們的注意力如何對感知到的東西進行過濾,而且我們不會意識到這個「過濾」的工作能達到這般程度。我們的注意力像是一盞探照燈,只能照亮很小的範圍,而其餘的黑暗部分則進入無意識的領域。

我們的注意力會對感知到的東西進行過濾。圖/Youtube

無意識的行為能幫助我們生活更便利

我們大部分的無意識源自於這種未被照明的感知。另一個重要部分則由我們在母體內以及一到三歲的經歷所組成。在這段時間裡,我們其實已經有了許多深刻的感知,但由於我們的聯合皮質尚未成熟,因此無法儲存這些經歷並將它們作為有意識的經歷來支配。

我們人格的三分之二左右是以這樣的方式逐漸成熟的,而我們自己日後卻不會記得,也無法想像當時確切的情況。

-----廣告,請繼續往下閱讀-----

除了每天生活中無意識的感知以及幼童時期深藏的無意識以外,還有一些其他的無意識,例如下意識的「自動行為」。我常常驚訝於自己能在爛醉的狀態下走數公里的路並安全到家,即使我後來怎麼也想不起回家的路上究竟發生了什麼事。

而當我此刻正在打這行字時,我的手指又是如何在十分之一秒的速度下找到鍵盤上的鍵呢? 如果有人蓋上鍵盤要我標記,那麼我大概連一個鍵也標記不出來。我的手指顯然要比我還來得聰明呢!

我們手指記鍵盤的位置,可能比我們用腦袋記還清楚。圖/Pixabay

還有那些曾經歷過卻又遺忘的事物,雖然有很長一段時間完全不在我的意識當中,多年後卻因為某個刺激信號而又再度想起。其中一個非常典型的例子就是氣味;氣味能夠將一連串原以為遺忘的畫面重新喚回到意識中。

——本文摘自《我是誰:對自我意識與「生而為人」的哲學思考》,2022 年 10 月,啟示出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----