0

0
1

文字

分享

0
0
1

精神疾病不可怕!察覺異樣,陪伴病人把握治療時機

careonline_96
・2024/08/07 ・867字 ・閱讀時間約 1 分鐘

每個人在生活中,都會出現情緒高亢和情緒低落的狀況,但是若因為情緒過高或情緒過低而對生活、課業與工作造成影響,便可能是罹患情感性疾患。

情感性疾患包括雙極性情感疾患、重度憂鬱症等。

雙極性情感疾患的症狀包括異常而持續地具有高昂、開闊、易怒的心情。膨脹的自尊。睡眠需求減少。比平時多話或不能克制地說個不停。過份積極參與活動或無節制的大採購等。

重度憂鬱症的症狀包括幾乎整天都有憂鬱心情。對各種活動的興趣都顯著減少。體重明顯下降或增加。每日都失眠或嗜睡。幾乎整日疲累或失去活力。出現無價值感、過份的罪惡感。專注能力減退。反覆想到死亡,出現自殺意念等。

-----廣告,請繼續往下閱讀-----

除了情感性疾患之外,焦慮性疾患、思覺失調症亦是常見的精神疾病。

若察覺自己出現異樣時,要盡早將情況告知學校輔導老師,或是尋求專業機構的協助。

若察覺他人出現異樣,我們應該學習友善且同理地面對,了解對方生病了,可能無法控制自己的情緒或言行舉止,所以不要跟他爭論、不要加以批評、也不要贊同病人妄想的內容。可適當表示自己並沒有這種感覺、看法,並勸導病人就醫,把握治療時機。

多關心、多陪伴,我們可以共同面對精神疾病!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

careonline_96
494 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
【從中國經典認識大腦系列】「風聲鶴唳,草木皆兵」——戰爭與創傷壓力造成的精神傷害
YTC_96
・2023/11/24 ・3921字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

「風聲鶴唳」、「草木皆兵」可能與創傷後壓力症候群有關?圖/GIPHY

「風聲鶴唳,草木皆兵」形容疑神疑鬼、驚恐不安,典故來自歷史上著名的「肥水之戰」。當時的慘烈狀況,前秦苻堅甚至可能出現與戰爭有關的創傷後壓力症候群 PTSD 的症狀。

根據《晉書·卷一一四.苻堅載記下》和《晉書.卷七九.謝安列傳》的記載,東晉時期野心勃勃的前秦苻堅意圖征服中原,東晉太元八年(前秦建元十九年)(西元 383 年),他率領龐大的八十萬大軍逼近肥水,準備進攻東晉。

東晉派出大將謝玄和謝石帶領八萬精兵抵抗。苻堅錯誤地認為東晉兵力不足,自以為佔有優勢,計劃迅速擊敗晉軍。然而未料到謝玄巧妙運用奇襲戰術,使苻堅損失了許多重要將領和士兵。

在肥水戰前,苻堅登上壽陽城觀察晉軍的情勢,卻發現晉軍部隊整齊有序,士氣高昂,戰鬥力十分強大。他遙望八公山,發現山上長滿無數草木,隨著風吹過,那些草木地晃動就像無數士兵在移動,於是他轉身對弟弟苻融說:「你看那山上,還有那麼多實力強大的軍隊,誰說晉軍很少呢?」這顯示出他內心的憂慮和恐慌,也是「草木皆兵」的由來。

後來苻堅的軍隊在淝水一戰中遭受重大失敗,苻融壯烈戰死;苻堅本人中箭受傷,只能率領殘兵拼命逃回北方。當他們逃亡的過程中,只要聽到風聲呼嘯、飛鶴的鳴叫聲,他們都以為晉軍仍然緊追不捨,他們日夜奔逃,飢寒交迫。然而,當他們最終回到北方時,龐大的百萬大軍已經損失了七八成。逃亡的過程他們疑神疑鬼,恐懼不安,也是成語「風聲鶴唳」的由來。

看不見的敵人——戰爭壓力造成的心理創傷

我們對於 PTSD 的了解,是建立在數百萬歸來士兵們的真實體驗。圖/GIPHY

我們對於 PTSD 的了解,並非一朝一夕就在醫學上產生了共識,從誤解到了解,是數百萬歸來士兵們的真實體驗。

1914 年,第一次世界大戰發生的早期, 英國遠征軍(British Expeditionary Force)發現多達 10% 的英國軍官和 4% 的士兵在戰鬥後出現一些醫學上的症狀,包括耳鳴、健忘症、頭痛、頭暈、震顫和對噪音過敏,甚至有人表現出恐慌、恐懼、逃跑,或是嚴重到無法思考推理、睡眠、行走或說話。由於這些症狀和腦部神經直接受傷類似,當時被認為是一種因中樞神經受傷而導致的精神疾病,但奇怪的是那些士兵們的頭部其實並未發現任何的外傷。

1915 年,英國醫生查爾斯·邁爾斯(Charles Myers)首次在醫學期刊柳葉刀(The Lancet)使用「彈震症」(shellshock)一詞,用來形容因為爆震衝擊而造成生理以及心理受損的士兵。

第二次世界大戰( 1939 年至 1945 年)後,隨著對士兵出現的壓力症狀有很多的認識,醫師的診斷上開始使用戰鬥反應壓力(Combat Stress Reaction (CSR))取代彈震症。雖然比起彈震症有了更多的了解,但醫學界們對於該症狀的出現仍不清楚。

1955 年,越戰爆發,美國總共派出 270 萬人前往越南作戰,最後高達 70 萬人需要某種形式的心理治療。

美國海軍陸戰隊列兵西奧多・J・米勒(Theodore J. Miller)表現出「千碼凝視」(thousand-yard stare),是「戰鬥反應壓力」的常見表現,包含注意力不集中、沮喪和疲倦的凝視。圖/Wikipedia

戰爭後的第二次創傷

創傷後壓力症候群 PTSD 被發現以前,已遭受精神創傷的士兵們可能需要面對社會歧視所造成的二次傷害。當時由於對彈震症的成因了解極少,有士兵因此被指控逃兵以及懦弱被送上軍事法庭,甚至因此被處決。越戰後雖然試圖重新融入社區的遭受創傷的退伍軍人數量相當驚人,但他們既無法獲得適當的治療,也無法從退伍軍人管理局獲得殘疾撫卹金,導致美國產生極大的家庭以及社會問題,也催生許多描述退伍士兵因戰爭創傷導致無法正常回歸社會的經典影視作品,如電影《越戰獵鹿人 The Deer Hunter 》(1978),以及《第一滴血 First Blood 》(1982)。

電影《第一滴血 》的藍波是有 PTSD 的越戰退伍士兵,在重返社會時遭受不合理待遇。圖/imdb

創傷後壓力症候群 PTSD

在 1970 年代,臨床上醫師開始使用創傷後壓力症候群(posttraumatic stress disorder),簡稱 PTSD 一詞來診斷越戰回來的退伍軍人出現的症狀。一直到 1980 年代,美國精神學會(American Psychiatric Association)才將 PTSD 納入精神疾病診斷與統計手冊(Diagnostic and Statistical Manual of Mental Disorders, Third Edition (DSM-III))。雖然 PTSD 被正式承認為精神疾病,但診斷上仍面臨許多挑戰。最大的困難就是 PTSD 的症狀與太多的精神疾病相似,如強迫症(Obsessive Compulsive Disorder)和廣泛性焦慮症(Generalized Anxiety Disorder)。這也使得 PTSD 的歸類和診斷需要不斷的精進修正,在 DSM-IV 時 PTSD 歸類在焦慮症(Anxiety Disorder)的範疇,但在最新版本的 DSM-V,PTSD 已經和焦慮症分開來,有著自己的分類——創傷及壓力相關疾患(Trauma- and Stressor-related Disorders)。這也有助於醫界以及學界提高對 PTSD 的重視,能更了解 PTSD 對神經的影響以及治療方式。

中醫如何治療受戰爭創傷的軍人

根據《晉書.卷一一四.苻堅載記下》和《晉書.卷七九.謝安列傳》的描述,苻堅和許多他隊伍中的士兵已經出現 PTSD 的症狀,但西方國家一直到西元 1970 年代才對 PTSD 有更多醫學上的見解,那究竟古代中國是如何治療那些精神上受到創傷的軍人們呢?

中國傳統醫學的奠基之作,也是現存最早的中醫理論經典著作——《黃帝內經》,成書於戰國至秦漢時期,並在東漢至隋唐時期經過多次的修訂和補充。PTSD 出現的症狀,可能接近中醫所說的「驚悸」、「健忘」、「情志病」的範疇。在《黃帝內經》中《素問》的《舉痛論》就記載「百病生於氣也,怒則氣上,喜則氣緩,悲則氣消,恐則氣下,寒則氣收,炅則氣泄,驚則氣亂,勞則氣耗,思則氣結」,說明人的七情(喜、怒、憂、思、悲、恐、驚)傷人先造成氣的變化﹐然後才有各式疾病的產生。七情分別屬於五臟(心、肝、脾、肺、腎),以喜、怒、思、悲、恐為代表,稱為五志。五志與五臟的對應關係為心志為喜,肝志為怒,脾志為思,肺志為憂(悲),腎志為恐,所以說怒傷肝、思傷脾、喜傷心、憂傷肺、恐傷腎。

雖然 PTSD 涵蓋中醫許多症狀的描述,但古代中國並未有明確文獻指出治療的方式,透過現代醫學診斷以及中醫的結合,有研究認為 PTSD 最可能是熱、火或體虛引起的心神失調;肝氣鬱結;及腎虛。次要的模式是長期肝氣鬱結(肝主脾胃、肝火、痰火、痰濕和心火)以及心、腎和脾器官系統體質缺陷的結果(Sinclair-Lian et al., 2006)。如此治療上就可以根據中醫師的評估來進行各臟器的調節。

結論

我們無法透過經典文學和改編真實事件的影視作品,就完全理解親臨戰場帶來的創傷。圖/pixabay

我們能從許多經典文學和改編真實歷史事件的影視作品認識到戰爭的殘酷,但這遠遠比不上親身面臨戰場上的恐怖和帶來的創傷。戰爭奪取無數人的性命,存活者面臨的巨大的壓力也將改變一個人的一生。

參考文獻

YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。