Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

混合原料,放入烤箱。叮!情緒完成了——《情緒跟你以為的不一樣》

商周出版_96
・2020/05/27 ・2479字 ・閱讀時間約 5 分鐘 ・SR值 526 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/麗莎.費德曼.巴瑞特博士 (Lisa Feldman Barrett, Ph.D.);
    譯者/李明芝
  • 編按:關於情緒的產生,巴瑞特博士跳脫過往舊思維提出「情緒建構論」,其中指出我們的情緒並不是被引發的,而是由自己所建構。

情緒建構理論不再使用的不只是身體指紋,還包括大腦的。它也避開了暗示有神經指紋存在的問題,例如「觸發恐懼的神經元在哪裡?」

「在哪裡」這幾個字內建了一個假設:每當你或地球上的任一個人感到害怕時,就有一組特定的神經元會活化。

大腦如果是廚房,情緒就是餅乾

在情緒建構理論中,悲傷、恐懼或生氣這樣的情緒種類,沒有明確的大腦位置,而情緒的各個實例,都是需要研究和了解的全腦狀態。因此,我們要問的是情緒如何、而不是在哪裡生成。比較中性的問題,例如「大腦如何製造恐懼的一個實例?」,並沒有假定其背後存在著神經指紋,只認為恐懼的經驗和知覺真實且值得研究。

建構情緒的複雜因素,就好像廚房裡的原料。圖/pxhere

如果情緒的實例像是餅乾,那麼大腦就像廚房,存放著一些常見的原料,像是麵粉、水、糖和鹽。1 我們從這些原料開始,可以製作出各式各樣的食物,像是餅乾、麵包、蛋糕、瑪芬、比司吉和司康餅。同樣的,你的大腦也備有核心「原料」,我們在第一章稱之為核心系統。

它們以複雜的方式(大約可類比為食譜)結合,產生快樂、悲傷、生氣、恐懼等等的多樣實例。原料本身的用途很多,不是專用於情緒,而是參與情緒的建構。

兩種不同情緒,可以用相似的原料製成。圖/giphy

兩種不同情緒種類(例如恐懼和生氣)的實例,可以用相似的原料製成,就像餅乾和麵包都含有麵粉。相反的,相同情緒種類(像是恐懼)的兩個實例,其中的原料也會有些變化,就像有些餅乾含有堅果、其他的則沒有。

-----廣告,請繼續往下閱讀-----

這個現象是我們的老朋友──簡並性──在作用:恐懼的各實例都是由整個大腦中不同組合的核心系統建構而成。

我們可以用大腦活動的模式,整體描述恐懼的所有實例,但這個模式只是統計總結,不需要描述任一實際的恐懼實例。就跟所有的科學類比一樣,我的廚房類比也有其局限。

情緒是大腦網絡交互作用下的產物

作為核心系統的大腦網絡,並不是像麵粉或鹽的「東西」。從統計上來說,它是我們視為一個單位的神經元集合,但在任何特定時間,都只有部分的神經元參與。2如果你有十種恐懼感受跟一個特定的大腦網絡有關,各種感受在大腦網絡中涉及的神經元可能不同。3 這是在網絡層次的簡並性。

此外,餅乾和麵包是個別的實質物體,但情緒的實例卻是連續大腦活動的瞬間片段,我們僅僅是把這些片段知覺成個別事件。儘管如此,或許你會發現,廚房類比有助於你想像互動的網絡如何產生多樣的心智狀態。

建構心智的核心系統以複雜的方式交互作用,沒有任何總管或負責人主導一切。然而,這些系統如果分開就無法理解,就像機器拆下來的零件,或像所謂的情緒模組或器官。那是因為,它們之間的交互作用,產生了光是零件本身並不存在的新屬性。

-----廣告,請繼續往下閱讀-----
這些原料經過複雜的化學作用產生迥異的口感。圖/pxfuel

用我的類比來說,當你用麵粉、酵母、水和鹽烤麵包時,這些原料經過複雜的化學作用出現新的產品。麵包有自己新興的屬性,像是「脆脆的」和「QQ 的」,光是原料本身並沒有這些屬性。事實上,如果你試圖在吃烤好的麵包後認出所有的原料,你很快會遇到困難。4

就拿鹽來說,麵包嘗起來其實不鹹,但鹽絕對是不可或缺的原料。同樣的,恐懼的實例無法化約到只剩原料。恐懼不是一個身體模式(就像麵包不是麵粉),而是從核心系統的交互作用中顯現。

恐懼的實例具有在原料本身找不到的新興屬性且無法化約,像是不愉快(你的車子在濕滑的高速公路上打滑失控)或愉快(坐在高高低低的雲霄飛車上)。你不可能倒著食譜的步驟,還原恐懼實例的恐懼感受。

想了解情緒的生成?絕對不能只討論「鹽」

即便確實知道情緒的原料有哪些,但倘若只單獨研究這些原料,我們會錯誤地理解原料如何共同作用來建構情緒。

如果我們藉由嘗一嘗和秤一秤來單獨研究鹽,不會了解鹽如何有助於製作麵包。因為鹽在烘烤的過程中,會跟其他原料產生化學作用:控制酵母生長、緊實麵團裡的麵筋,還有最重要的是增添風味。

-----廣告,請繼續往下閱讀-----

若想了解鹽如何改變麵包的食譜,你必須在做麵包的脈絡下觀察它的作用。同樣的,若想研究情緒的各種原料,那就不能不考慮造成影響的大腦其餘部分。

這就是為什麼每次照書煮,味道還是會不一樣的原因。圖/giphy

名為整體論的這種哲學,解釋了為什麼每次我在自己的廚房烤麵包時,即使用的是完全相同的食譜,卻做出不同的結果。

  • 每一種原料我都秤重;我揉麵團的時間相同;
  • 我的烤箱設定在相同溫度;
  • 我計算往烤箱噴水的次數,好讓麵包表皮酥脆。

一切都非常系統化,結果卻是有時比較發、有時不太發、有時比較甜。因為烤麵包還有其他食譜沒提到的背景因素,像是我揉麵團的力道有多大、廚房的濕度有多高,以及發麵團的精確溫度是多少。

註釋:

  1. 「糖和鹽」(sugar, and salt):Barrett 2009.
  2. 「在任何特定時間,都只有部分的神經元參與」(participate at any given time):Marder & Taylor 2011.
  3. 如果你偏好用運動來類比,可以把大腦網絡想像成一支棒球隊。在某個特定時刻,全隊 25 個人中只有 9 人上場比賽,每次參加比賽的 9 個人可能不同,但我們會說「這一隊」獲勝或失敗。
  4. 「你很快會遇到困難」(in for a difficult time):請你想像在吃完可頌後試著逆向製作一個可頌,參見heam.info/croissant。逆向工程的問題在於你只處理浮現的線索(Barrett 2011a),亦即那個系統有成分總和以外的屬性。參見heam.inof/emergence-1.

——本書摘自《情緒跟你以為的不一樣──科學證據揭露喜怒哀樂如何生成》,2020 年 3 月,商周出版

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
當情緒像過山車?從亢奮到低落,解碼躁鬱症的真實面貌
PanSci_96
・2024/10/12 ・2253字 ・閱讀時間約 4 分鐘

躁鬱症(Bipolar Disorder),正式名稱為「雙向情緒疾患」或「雙極性情感障礙」,是一種讓患者的情緒不受控制地在極度亢奮和極度低落之間擺盪的精神疾病。這樣的情緒變化不僅僅是短暫的起伏,而是持續多天、甚至數週的狀態,對於患者的生活、關係和工作會造成重大影響。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是躁鬱症?

躁鬱症患者的情緒通常經歷兩個極端階段:躁期和鬱期。

在躁期,患者可能會感到無比的精力充沛、自信心爆棚,甚至會有過度樂觀和衝動的行為。然而,躁鬱症不僅僅是「情緒高漲」的表現,在躁期過後,患者往往會經歷嚴重的情緒低谷,進入所謂的鬱期。此時,他們會感到情緒低落、無力感、甚至有自我傷害的傾向。

近幾年大眾逐漸正視精神疾病的影響,許多名人也曾經公開分享他們的躁鬱症經歷,如歌手瑪麗亞.凱莉、演員小勞勃道尼。這些公眾人物的經歷讓我們看到了這種精神疾病的廣泛影響,以及如何對他們的創作、生活和心理造成衝擊。

-----廣告,請繼續往下閱讀-----

躁鬱症的分類與盛行率

根據跨國研究,不論種族、性別或地區,躁鬱症的盛行率約為 1%,這意味著每 100 人中就有一人可能經歷過躁鬱症的發作。如果將所有的亞型計算在內,終生盛行率甚至可能高達 2.4%。躁鬱症的發病年齡通常集中在 20 至 30 歲之間,超過 70% 的患者在 25 歲前就會出現早期症狀。

躁鬱症依照症狀的不同,還可以分為不同的亞型。最常見的分類是第一型和第二型。第一型躁鬱症的特徵是患者會經歷完整的躁期,通常會影響患者的日常功能,甚至需要住院治療。而第二型躁鬱症的躁期則相對較輕,稱為「輕躁期」,但鬱期仍然會對患者的生活造成嚴重影響。

躁鬱症根據症狀可分為不同亞型,最常見的是第一型和第二型。圖/envato

什麼是「躁期」和「鬱期」?

「躁期」和「鬱期」是躁鬱症的兩個主要特徵階段。

躁期: 許多人對「躁」字的理解常常會聯想到「暴躁」或「焦躁」,實際上躁鬱症的躁期,更多的是情緒高昂、亢奮的狀態。在輕躁期(Hypomania),患者會持續數天感到極度精力充沛,無論在工作還是生活中,表現得比平時更有自信和創造力。但問題是,這種情緒亢奮狀態不一定持續太久,躁期可能會逐漸惡化為狂躁期(Mania)。這時,患者的行為可能會變得極端,容易做出無法預測的決定,例如過度消費、縱情娛樂或進行不安全的行為。

-----廣告,請繼續往下閱讀-----

鬱期: 在鬱期,患者的情緒和行為完全反轉。他們會感到無精打采、情緒低落,對任何事物都提不起勁。這時候,患者的日常活動變得困難,注意力和記憶力也會大幅下降,甚至有自我傷害或自殺的傾向。

從外界看來,躁期似乎是一個非常「高能」的狀態,但實際上,躁鬱症的危險之處正在於它的不穩定性。躁鬱症患者在躁期中無法控制自己的情緒與行為,即使感覺自己處於高峰狀態,這樣的「興奮」很可能會導致衝動行為,如不理智的財務決策或人際衝突。

如何應對躁鬱症?

躁鬱症不僅僅是情緒的擺盪,同時也會對患者的生活產生影響:

  1. 無法控制的躁期時間:躁期的長度和強度不是患者能控制的,患者可能從精力充沛的狀態,轉變為難以收拾的混亂局面。
  2. 鬱期的危險性:在躁期過後,進入鬱期的患者常常因為自責或對前期行為的後悔,而陷入更深的低谷,這增加了自我傷害的風險。
  3. 生活質量下降:反覆發作的情緒擺盪讓患者難以享受生活,甚至對快樂的感受也會變得懷疑和恐懼。
  4. 人際關係受損:情緒極端的變化會讓患者難以建立穩定的人際關係,這對於長期支持系統的建立是巨大的挑戰。
  5. 大腦損傷:每次發作對大腦的損害都是不可逆的,長期下來,注意力、記憶力、甚至思考能力都會受到影響。

治療與日常應對方法

對於躁鬱症的治療,藥物和心理治療是兩個不可或缺的部分。穩定情緒的藥物,如鋰鹽,是控制躁鬱症的重要工具。鋰鹽自 20 世紀開始就被廣泛用於躁鬱症的治療,能有效減少躁鬱症的復發風險。如果患者正處於躁期,醫生還可能會使用抗精神病藥物來幫助控制症狀。

-----廣告,請繼續往下閱讀-----

除了藥物治療,心理治療同樣重要,特別是在症狀穩定後,透過心理治療,患者可以學習如何識別躁鬱症復發的早期徵兆,以及如何調適壓力和情緒。

心理治療可以幫助患者學習識別躁鬱症復發的早期徵兆,並有效調適壓力和情緒。圖/envato

如何支持身邊的躁鬱症患者?

身為躁鬱症患者的家人或朋友,了解如何在不同的情緒階段支持患者是關鍵。在躁期時,避免硬碰硬,而是試著將患者的注意力引導到安全的活動上;在鬱期時,提供非批評的陪伴,讓患者感受到被理解與支持。

躁鬱症是一種需要長期管理的疾病,但這並不意味著生活的希望就此消失。許多躁鬱症患者在接受治療後,依然能過著豐富充實的生活,並在自己的專業領域中發揮才華,擁有幸福的人生。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing