0

0
1

文字

分享

0
0
1

心理疾患分類的新觀點

Y. H. Sun
・2012/08/09 ・1754字 ・閱讀時間約 3 分鐘 ・SR值 569 ・九年級

譯 / Y. H. Sun

當你請哈佛大學(Haravrd University)心理系助理教授柏克豪(Joshua Buckholtz)解釋他在心理疾患的研究時,他會以一個跟基礎醫學有關的問題來當作他的開頭:「什麼時候有了流感性盲腸炎(flu appendicitis)?」

當然,從來沒有這東西-這兩種疾病分別隸屬於截然不同的生物成因和現象。柏克豪解釋,就是因為了解它們到底是什麼,所以才讓醫生們得以精確分辨出這兩種疾病。

「我們有相當成功的指標區分生理疾病,像是流感和盲腸炎,」柏克豪表示,「我們也同樣假設心理疾患的分類標準是成功且具有效力的……」

-----廣告,請繼續往下閱讀-----

不幸的是,在心理疾患的診斷上並非如此。

近幾年來,人們開始了解那些嚴格區分心理疾患的標準,並不符合醫師在診間所看到的狀況。根據柏克豪的說法,符合多種心理疾患的診斷標準是原則,而不該是例外。在醫學裡,就像是很多病人同時發展出流感和盲腸炎一樣,「這顯示若不是有許多人不幸地同時罹患了多種相差甚大的疾病,就是我們分類心理疾患的方法出了問題。」

在今年7月21號發表於Neuron的一篇文章中,柏克豪和共同作者麥爾林登貝格(Andreas Meyer-Lindenberg)——一位來自德國海德堡大學(University of Heidelberg)和心理健康中央研究院(the Central Institute of Mental Health)的研究者——為診斷標準的斷層提供了一個生物學觀點的理由。根據目前所知由基因對大腦的影響引發的心理疾患,他們認為,之所以有許多心理疾患共享相同的症狀,是因為基因在關鍵腦區造成的改變,影響了許多的認知處理歷程(cognitive processes)。

「這篇研究報告的目的,是希望能在生理學為前提的基礎上解釋我們在診間所看到的現象,也就是那些重複出現在不同診斷標準裡的症狀,」柏克豪表示,「從基因灶原的觀點去看心理疾病,可以更清楚的發現,在診斷標準裡基因是不可知的(genes are agnostic when it comes to diagnostic criteria)。」

-----廣告,請繼續往下閱讀-----

「個體基因差異造成了大腦迴路(brain circuits)在功能上的多樣性。」他繼續說道:「這些大腦迴路的功能差異,導致了我們身邊的人在認知、情緒、動機和社交功能上有極大的不同。參與其中的特定基因,和那些基因如何與我們所暴露的環境互動,決定了特定的大腦迴路如何作用。當這些迴路沒有正常運作,也就表示其所對應的認知功能缺陷是由一個『病態迴路(‘sick’ circuit)』在支援著。這些缺陷造成日常生活的異常,我們稱它為病症;進而這些病症造成一定程度的損害,就會有人來到診所,並接受診斷。」

文章中的發現是回顧了上百篇的文獻,並透過這些文獻來審查在不同疾患裡大腦迴路異常的模式,以及基因多樣性如何對引發異常的神經傳遞物訊號(neurotransmitter signaling)或神經發育(neuron growth)負責。根據這些文獻,研究團隊指出了四個與認知、情緒、動機和社交功能相關,且橫跨不同疾病的大腦迴路。

「導致心理疾病的基因和環境致病因子(risk factors)使得一或多個大腦迴路功能產生不同等級的變化,並使得由這些迴路支援的認知處理有了不同程度的改變,」柏克豪表示:「這些認知處理的多樣性導致了同樣的病症用不同的表現,橫跨了多種疾患。」

柏克豪認為,這項研究發現可能造成的影響,就是研究人員會開始試圖設計出一種新方法來分類心理疾患。

-----廣告,請繼續往下閱讀-----

目前,精神診斷的「聖經」是《精神疾病診斷與統計手冊》(the Diagnostic and Statistical Manual of Mental Disorders),以DSM而廣為人知。雖然最初的目的是想要將臨床醫師對於心理疾患的診斷標準化,但是在DSM裡面將疾患分門別類的描述,並不符合在現實中人們是如何發展出心理疾病的。根據柏克豪的說法:「病人所經歷的病症是真實的,但是那些特殊的、獨立的、具有效度的疾病本身不是。」也就是說,在流感與盲腸炎之間的差異,與精神分裂症(schizophrenia)與重度憂鬱症(major depression)之間的差異並不相同。

「在DSM中,最早重視的是可信度——也就是能夠讓不同的臨床醫師診斷出同樣結果的能力,」柏克豪表示:「但DSM中描述的分類已經有了他們自己的生命,而就像海曼(Steven Hyman)所說的,現在人們相信,它們是自然產物(natural kinds)。」

然而,這篇文章中的發現,隱含了將現在的診斷系統推回它的起源,也就是依據疾病的成因來進行分類,而非它們外顯的症狀。

「現在,這個領域嘗試著使用神經生物學(neurobiology)來分類心理疾患。而在這篇文章中,我們認為使用大腦迴路層級當作分類的基礎,是最好的。」柏克豪解釋:「在釐清致病因子、大腦迴路、認知處理以及症狀之間的連結後,我認為我們將有能力針對心理病理的各個面向,形成一個更為精準的心理病理分類。」

-----廣告,請繼續往下閱讀-----

資料來源:Harvard gazette: A fresh look at mental illness [July 30, 2012]

文章難易度
Y. H. Sun
19 篇文章 ・ 1 位粉絲
不專業翻譯,閱讀涉獵廣泛,主要領域在心理學、認知神經科學,以及相關的生物醫學。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「腦部圖譜」定位精神疾患的病變
胡中行_96
・2023/08/24 ・1950字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「曉得澳大利亞國民平均身高 1.7 米,[註]我還是不會知道隔壁鄰居有多高。」澳洲蒙納許大學(Monash Univeristy)的博士生 Ashlea Segal,以此比喻精神科學的困境,表示研究「大多都聚焦於群體的平均值,很難瞭解個體的腦部變化」。[1]於是,她帶領以該校特納腦部暨心理衛生機構(Turner Institute for Brain and Mental Health)為主的跨國團隊,掃描普通人和 6 種精神疾病患者的腦部,並加以比較。他們的研究結果,發表於 2023 年 8 月 14 日的《自然神經科學》(Nature Neuroscience)期刊。[2]

腦部圖譜

研究團隊總共招募了 3,746 人,從中篩選出 18 至 64 歲,涵蓋注意力不足過動症泛自閉症障礙雙極性情感疾患憂鬱症強迫症思覺失調症的 1,294 名精神病患;以及 1,465 名一般人當作對照組。用核磁共振掃描每一個受測者,製作腦部圖譜(brain mapping),並分析 1,032 個區域的灰質體積(gray matter volume)於個體之間的異同。[2]

規範模型

有別於病例對照研究(case–control researches),將相同診斷的病患視為單一群體,以其平均值,與一般人組成的對照組比較;有些研究採取規範模型(normative modeling),考量年齡和性別等多種因素,定義出灰質體積等觀察重點的變異範圍,再分析個體的偏離情形。[2]後者的作法較不會被臨床標籤所限制。[3]過往規範模型的文獻,已經指出精神病患者的腦部與普通人極為不同;然而各個患者之間,即使診斷相同,腦部異常的地方也差別甚大。科學家無法解釋為何腦部病變的位置不一樣,結果卻殊途同歸。[2]

不過,既然腦部是一個網絡,如果出事的點都接在同一個功能的迴路上,或許就會造成相同的問題。此前有些神經科學研究,已經證實有同樣運動、感知或認知症狀的病患,腦部病灶的位置可能互異,但都連結到共同的區塊。研究團隊受到啟發,使用規範模型,探索精神病患的腦部迴路及延伸網絡,並預期得到雷同的答案。[2]

-----廣告,請繼續往下閱讀-----
正常(藍色)與偏差(紅色)的迴路(橙色)和網絡(黃色)示意圖。圖/參考資料2,Figure 1(CC BY 4.0)

迴路/網絡

果不其然,在具有相同診斷的精神病患中,腦部灰質體積的明顯偏差,出現於同個位置的比例不超過7%;然而從迴路或網絡的層級來看,便可能有高達 56% 的重疊。同一診斷下,個體的額葉、頂葉、島葉和顳葉皮質等連結樞紐,在迴路層次高度相似;而各種精神疾患之間則迥異。比方說,注意力不足過動症患者的灰質體積偏差,僅限於某些範圍;而思覺失調症的病人,則是幾乎囊括全腦。這個發現挑戰了傳統上,認為單一精神診斷,只對應特定迴路障礙的想法。[2]

功能迴路異質性:g 圖顯示注意力不足過動症(ADHD)和思覺失調症(SCZ)的範圍差距。圖/參考資料 2,Figure 3(CC BY 4.0)

此外,在網絡的層級,掌管認知控制、內感受覺察,以及內外在注意力轉換的警覺/腹側注意力網絡(salience/ventral attention network),與此處 6 種精神疾患裡的 5 種都有關聯。其病變顯然在多種精神疾患的發展中,扮演重要角色。[2]

多數精神疾患都與警覺/腹側注意力網絡(淺紫色;SAL/VA)有關。圖/參考資料 2,Figure 4(CC BY 4.0)

治療的目標

經由腦部圖譜,研究團隊得以推論治療目標:憂鬱症雙極性情感疾患,分別為前額葉皮質的右邊與左邊;思覺失調症患者的警覺/腹側注意力網絡;以及注意力不足過動症病人的背側注意力網絡(dorsal attention network)與內側顳葉網絡(medial temporal network)。[2]然而,Ashlea Sega l以憂鬱症患者的前額葉為例,說明目前非侵入性腦刺激術(non-invasive brain stimulation)所針對的迴路,可能「只適用於部份患者」。[1]畢竟根據論文,單一診斷中,個體在這些目標上的重疊率,僅有一至五成不等。[2]

因此,將來的研究或許該跳脫傳統診斷的框架,不執著於尋找一體適用的解方;而是繼續擴充數據,掌握腦部變化與精神疾患的關係,以便發展為病患量身訂做的客製化療法。[2, 4]

-----廣告,請繼續往下閱讀-----

  

備註

根據澳洲統計局 2017-2018 年度的資料,該國成年男性平均身高為 174.5 公分;女性則是 161.2 公分。[5]

參考資料

  1. White R. (14 AUG 2023) ‘Scientists Map How Mental Illness Changes Your Brain’. Newsweek, U.S.
  2. Segal A, Parkes L, Aquino K, et al. (2023) ‘Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders’. Nature Neuroscience.
  3. Rutherford S, Kia SM, Wolfers T, et al. (2022) ‘The normative modeling framework for computational psychiatry’. Nature Protocols, 17, 1711–1734.
  4. Brain Network Mapping Study Challenges Basis for Psychiatric Distinctions’. (14 AUG 2023) Genetic Engineering & Biotechnology News, U.S.
  5. National Health Survey: First results’. (12 DEC 2018) Australian Bureau of Statistics.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
2

文字

分享

0
4
2
瀕死大腦的最後波紋——人生跑馬燈的科學證據?
YTC_96
・2023/08/09 ・2578字 ・閱讀時間約 5 分鐘

最後波紋。圖/imdb.com

JOJO 的奇妙冒險中,西撒.安德里歐.齊貝林臨死前的「最後波紋」代表著生者最後的思念與力量,是讓 JOJO 粉痛哭流涕的名場景。最後的波紋看似只是作者荒木飛呂彦大師的創作,沒想到神經科學家記錄了瀕死的人類大腦的活動,發現死亡的當下出現有節律的高頻波紋。這些波形和做夢、記憶回憶以及冥想期間發生的腦電圖相似,也彷彿說明最後的波紋是真的存在!

此外,據說人在彌留時能瞬間看到過往的種種回憶,就像人生跑馬燈般快速回顧一生。這些在生死間徘迴所產生的不可思議現象一直是科學家們感興趣的議題。究竟心臟停止後的瀕死狀態(near-death experience (NDE))和大腦活動與意識狀態的關係是什麼?大腦在瀕死狀態時發生了什麼?這是否又能解釋人生跑馬燈的現象呢?

神秘的瀕死經驗

根據瀕死經驗科學研究的奠基者,且有瀕死經驗科學研究之父之稱的布魯斯.葛瑞森醫師(Bruce Greyson),瀕死經驗是一個深刻的主觀心理經驗,通常發生在接近死亡的人身上,處於嚴重的身體,或情緒危險的情況下。這種體驗超越個人自我的感覺,是一種神聖或更高原則的結合。包括脫離身體、漂浮的感覺、完全的寧靜、安全、溫暖、絕對溶解的體驗和光的存在。又甚至可能經歷包括痛苦、空虛、毀滅和巨大空虛的感覺[1-3]

瀕死體驗中反復出現的常見元素是看到一條黑暗的隧道,經歷明亮的燈光,寧靜祥和的感覺。該圖為荷蘭畫家耶羅尼米斯·波希 (Hieronymus Bosch) 的Ascent of the Blessed。圖/wikimedia

即時記錄瀕死的人類大腦活動

過去認為心臟停止後大腦是低活動的狀態,直到約 15 年前左右(西元 2009 年),才記錄到死亡前電流激增(end-of-life electrical surges (ELES))的現象。 但這些紀錄僅來自回溯瀕死期間的測量值,並不是即時記錄臨終患者腦電圖[4]

-----廣告,請繼續往下閱讀-----

大約 10 年前,密西根大學研究員吉莫波吉金(Jimo Borjigin)和其團隊進行老鼠實驗,發現在心臟停止後的前 30 秒,gamma 振盪與 alpha 和 theta 之間的相位耦合在大腦皮質與心臟,以及大腦前端和後端的連接性有增加的現象。這些神經振盪原本都只存在於清醒的生物上,但在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平[5]。 這也說明了在動物在臨死前可能經歷了特殊的體驗。

第一次在人類大腦進行從瀕死到死亡過渡階段的連續腦電圖記錄,則在去年 2 月發表在「老化神經科學前沿」( Frontiers in Aging Neuroscience)。愛沙尼亞塔爾圖大學的勞爾維森特(Raul Vicente)博士及其同事使用連續腦電圖檢測一名 87 歲的患者癲癇並同時進行治療。雖然很遺憾,最後患者心臟病發作並去世了,但他們測量了死亡前後 900 秒的大腦活動,並調查心臟停止跳動前後 30 秒內發生的情況。結果發現,就在心臟停止的前後,出現了 gamma 振盪、theta 震盪、alpha 震盪以及 beta 神經震盪的變化。這結果就和之前的老鼠實驗相當類似[6]

在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平。 這也說明了在動物在臨死前可能經歷了特殊的體驗。圖/ Pixabay

瀕死之際大腦活動激增能否解釋人生跑馬燈?

雖然以上的研究說明,人在死亡前大腦會產生類似清醒狀態時才有的腦波反應,但這些證據並不足以證明人生跑馬燈的存在。為了證實這個現象的可能性,之前提到進行老鼠實驗的吉莫波吉金(Jimo Borjigin)在人類使用相同的計算工具來分析腦電圖信號,並關注腦電圖功率的時間動態、低頻和高頻振盪之間的局部和遠程相位-振幅耦合,以及所有頻段的功能性和定向大腦皮質連接。簡單來說,就是想要知道瀕死時人類大腦和意識以及認知功能相關的腦區是否產生變化。

他們對四位已陷入昏迷的病人進行紀錄,在死亡前,兩名在前額和中央皮質區出現廣泛的 beta 和 gamma 波增加。這兩名病人隨後出現了顳葉中反復出現的大型 beta 和 gamma 波活動,並涉及到體感皮質(somatosensory cortex, SSC)。高頻 gamma 波的振幅與慢速 beta 波的相位之間的關聯是發生在背外側前額皮質(dorsolateral prefrontal cortex)和體感皮質之間。更值得注意的是,gamma 波激增的位置是在和意識緊密相關,由顳葉-頂葉-枕葉皮層組成的後皮質熱區(posterior cortical hot zone)[7]

-----廣告,請繼續往下閱讀-----
一名 24 歲昏迷婦女在移除呼吸器後的的腦電圖變化。
S1:該婦女有呼吸器維持生命,因心臟驟停引起缺氧損傷。
S2: 開始時移除呼吸機,此時出現高頻和高振幅活動。
患者的最後一次心跳發生在右側的 S11 末尾。圖/National Library of Medicine

受限於道德倫理以及醫學技術,科學家們無法直接驗證瀕死大腦產生的腦波狀態是否就是產生瀕死經驗。但至少能確定的是,哺乳動物的大腦可以在瀕死時產生與增強的意識處理相關的神經關聯。

結論

《論語‧先進篇》子曰:「未知生,焉知死?」雖然孔子曾說,活人的事情道理都還不明白,又怎能清楚死亡是怎麼一回事呢?但探討人在生死間徘徊的現象不僅僅是一個科學問題,更代表著意識研究、臨床應用和倫理議題的突破。

透過更精細且長時間的腦電波紀錄追蹤,有許多證據觀察到在人們跨越生死那一瞬間,大腦會試圖做最後的掙扎。人生在世短短數十載,轉眼間便煙消雲散,瀕死的大腦在跨越生與死那鴻溝之前的體驗也是人生謝幕前的最後一次演出。

從瀕死經驗探討人性的電影-別闖陰陽界(Flatliners)。圖/IMDB

參考資料

  1. Greyson, B. (2000). Near-death experiences. In E. Cardeña, S. J. Lynn, & S. Krippner (Eds.), Varieties of anomalous experience: Examining the scientific evidence (pp. 315–352). American Psychological Association.
  2. https://en.wikipedia.org/wiki/Bruce_Greyson
  3. https://en.wikipedia.org/wiki/Near-death_experience
  4. Chawla, L. S., Akst, S., Junker, C., Jacobs, B., and Seneff, M. G. (2009). Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100. doi: 10.1089/jpm.2009.0159
  5. Borjigin, J., Lee, U. C., Liu, T., Pal, D., Huff, S., Klarr, D., et al. (2013). Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl. Acad. Sci. U.S.A. 110, 14432–14437. doi: 10.1073/pnas.1308285110
  6. Vicente R, Rizzuto M, Sarica C, Yamamoto K, Sadr M, Khajuria T, Fatehi M, Moien-Afshari F, Haw CS, Llinas RR, Lozano AM, Neimat JS and Zemmar A (2022) Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front. Aging Neurosci. 14:813531. doi: 10.3389/fnagi.2022.813531
  7. Xu G, Mihaylova T, Li D, Tian F, Farrehi PM, Parent JM, Mashour GA, Wang MM, Borjigin J. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2216268120. doi: 10.1073/pnas.2216268120.
YTC_96
11 篇文章 ・ 17 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。