1

8
0

文字

分享

1
8
0

任何整數裡都藏著的神秘數字:數字 9 可以創造出什麼樣的神奇火花?——《數學大觀念》

貓頭鷹出版社_96
・2023/05/08 ・1957字 ・閱讀時間約 4 分鐘

小時候,我最喜歡 9 這個數字了,因為它似乎蘊含許多神奇的特性。我想給你看一個例子,請照著下列充滿魔力的數學指示:

  1. 想一個在 1 到 10 之間的數(如果不滿意,你也可以挑更大的整數並使用計算機)。
  2. 將這個數乘以 3。
  3. 然後加上 6。
  4. 把得到的數字再乘以 3。
  5. 如果你願意的話,把這個數字再乘以 2。
  6. 將這個數字的所有位數相加,如果是個位數,就停止運算。
  7. 如果是二位數,那麼將兩個位數再次相加。
  8. 專心想著你的答案。

直覺告訴我你正在想的數字是 9,對不對?(如果不是的話,你或許該回過頭驗算一下。)

是什麼讓 9 這個數字如此神奇?我們會在本章看到它的一些神奇特性,然後我們甚至會考慮有另一個世界的存在,在那裡 12 和3 的功能相等而且完全合理!

觀察 9 的倍數

9 的第一個神奇特性可以從它的倍數中看出來:

-----廣告,請繼續往下閱讀-----

9、18、27、36、45、54、63、72、81、90、99、108、117、126、135、144⋯⋯

這些數目有什麼共通點?

如果你將每個數字各自的位數相加,似乎每次都會得到 9。

讓我們挑其中幾個來試試看:18 的各個位數之和是 1 + 8 = 9;27 是 2 + 7 = 9;144 則是 1 + 4 + 4 = 9。但是慢著,這裡有一個例外:99 的位數和是 18,不過 18 本身仍是 9 的倍數。所以我們得到下面這個重要結論,這件事你可能在小學就學過了,而我們稍後也會在這一章中解釋:

如果一個數字是 9 的倍數,那麼它的各個位數之和也必定是 9 的倍數(反之亦然)。

舉例來說,123,456,789 的位數和是 45(9 的倍數),所以這個數就是 9 的倍數。反過來說,314,159 的位數和是 23(非 9 的倍數),所以這個數就不是 9 的倍數。

整數的強大性質

讓我們用這個規則來了解前面的那個魔術戲法,並仔細檢驗其中的代數。你先想一個數字,我們稱之為N。乘上三倍之後你會得到 3N,在下一步變成 3N + 6。將這個數字再乘上三倍則是 3(3N + 6)= 9N + 18, 也就是 9(N + 2)。如果你決定要再乘上 2, 就會得到 18N + 36 = 9(2N+4);但不管有沒有乘上 2,你最後的答案都會是9 乘上一個整數,所以最後一定會得到 9 的倍數。(編按:這就是整數的強大性質之一,任何一個 a 倍數乘上任意整數,仍然還是 a 的倍數)

-----廣告,請繼續往下閱讀-----

當你計算這個數字的各個位數之和,你一定會再度得到一個 9 的倍數(可能是 9 或 18 或 27 或 36),而且這些數目的各個位數之和必定為 9。

還有另一個我也很喜歡用的魔術戲法,它是前面那個魔術的變形。找一個有計算機的人,請他從下列四位數中挑出一個:

3141 或 2718 或 2358 或 9999

這些數字分別是 π(詳見第八章)的前四位數、e(詳見第十章)的前四位數、連續幾個費氏數(詳見第五章),以及四位數的最大值。

-----廣告,請繼續往下閱讀-----

請他將所選的四位數乘上任何一個三位數,結果會是一個你不可能會知道的六位數或七位數。接下來請他在腦海中圈出答案中的任一位數,但不要是 0(因為它已經像是個圓圈了!),然後要他以任意順序將所有沒圈起來的數字唸出來,並且專心想著那個剩下的數字。你只要稍加注意,就可以成功地揭開答案了。

又是 9!

所以說祕密是什麼呢?請注意,能選擇的這四個數字都是 9 的倍數。

既然是從一個 9 的倍數開始,那麼乘上一個整數之後結果仍然會是 9 的倍數,因此它的位數和也一定會是 9 的倍數。隨著數字被逐一唸出,你只要將它們統統相加即可,被藏起來的那一個數字在加上之後能使總和變成 9 的倍數。舉例來說,假設他唸出 5、0、2、2、6 和 1,這些數字的總和是 16,那麼被藏起來的數字一定是 2,因為加上之後能得到最接近的 9 的倍數,也就是18;如果唸出來的數字是1、1、2、3、5、8,總和為 20,那麼隱藏的數字一定是 7,這樣才能得到 27;假設你將唸出的數字相加得到 18,他藏起來的是哪個數字?由於我們告訴過他不要圈選 0,所以缺少的數字一定是9。

謎底揭曉

但為什麼一個 9 的倍數其位數和永遠是 9 的倍數呢?讓我們來看看下面這個例子,當 3456 以 10 的次方項表示時,看起來如下式

-----廣告,請繼續往下閱讀-----

3456 = (3 × 1000) + (4 × 100) + (5 × 10) + 6

= 3(999 + 1) + 4(99 + 1) + 5(9 + 1) + 6

= 3(999) + 4(99) + 5(9) + 3 + 4 + 5 + 6

= (9 的倍數)+ 18

-----廣告,請繼續往下閱讀-----

= (9 的倍數)

運用同樣的邏輯,如果一個數字的位數和是 9 的倍數,則此數本身一定也是 9 的倍數(反之亦然:任何一個 9 的倍數其位數和一定是 9 的倍數)。

編按:任何一個整數,都可以寫成 9 的倍數+各個位數數字的和,如同上式第四行,因此只要各個位數數字的和是 9 的倍數,整個數字就會是 9 的倍數。

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

36
0

文字

分享

0
36
0
強大的三角測量學!讓我們先回顧簡單的三角邊比——《數學大觀念》
貓頭鷹出版社_96
・2023/05/07 ・1623字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

三角學能讓我們解出一些無法用古典幾何學處理的幾何題目,舉例來說,考慮下面這個問題:

僅用一個量角器和一個袖珍計算機,測出附近某座山的高度。

對於這個問題,我們將提出五種不同解法。實際上,前三種解法幾乎連一丁點數學都沒用上!

方法一(費力解法)

爬上山頂,將你的計算機往下丟(這可能需要用上相當大的力氣),然後測出計算機撞到地面所需的時間(或聆聽下方背包客的尖叫聲)。如果總共花費了 t 秒,且忽略空氣阻力和終端速度帶來的影響,那麼標準的物理學方程式會指出這座山大約高 16t2 英尺。

這個方法的缺點是空氣阻力和終端速度的影響可能相當大,所以你的計算會變得不精確,而且要找回這台計算機也不太可能了。除此之外,這個方法需要用到的計時器可能就在你的計算機上。要說優點的話,則是這個方法並不需要用到量角器。

-----廣告,請繼續往下閱讀-----

方法二(輕鬆解法)

找一位友善的保育巡查員,然後用你的嶄新量角器跟他交換山峰的高度這項情報。如果你找不到任何保育巡查員,那就看看附近有沒有一位親切的男士,他一身漂亮的古銅色肌膚表示他可能花了很多時間待在戶外,因而可能對你這個問題的答案相當清楚。

這個方法的優點是你有可能會交到新朋友,而且不需要犧牲你的計算機。此外,如果你對這位深膚色男士的回答心存懷疑,你還是可以親自爬上這座山,然後採用第一個方法找出答案。這個方法的缺點是你可能會失去你的量角器,還被冠上賄賂的罪名。

方法三(聰明解法)

在嘗試方法一和方法二之前,先試著找出一個告示牌,上面標有這座山的高度。這麼做的好處是你不需要犧牲任何一項裝備。 ☺

當然,如果這三種方法都不合你意,那麼我們就必須訴諸於數學的解法,也就是本章的主題。

-----廣告,請繼續往下閱讀-----

研究三角形可以做什麼?

「三角學」(trigonometry)在字面上就是三角測量的意思,這個詞的字根源自希臘文「trigon」和「metria」。接下來我們先從分析一些經典的三角形開始。

等腰直角三角形

等腰直角三角形包含一個 90º 角,它的另外兩個角必定相同,所以兩者都是 45º(因為三角形的內角和為180º),這樣的三角形我們稱之為 45−45−90 三角形。如果兩個直角邊的長度都是1,那麼根據畢氏定理,斜邊長一定是 。請注意,任何等腰直角三角形的邊長比例都是 ,如下圖所示。

在一個 45−45−90 三角形中,邊長的比例是 。圖/數學大觀念

30− 60− 90 三角形

在一個等邊三角形中,每個邊長都相同,而且每個角的大小都是 60º。如果我們將一個等邊三角形分成全等的兩半,如下圖所示,就會得到兩個其內角分別是 30º、60º 和 90º 的直角三角形。如果這個等邊三角形的邊長為 2,那麼內含的兩個直角三角形的斜邊長就會是 2,而較短的直角邊長為 1。根據畢氏定理,較長的直角邊長會是。因此,所有 30− 60− 90 三角形的比例都會是 (也可以學學我,用 1、2、 這個簡單的順序來記憶)。特別是如果斜邊長為 1,則另外兩個邊長分別是 以及

在一個 30− 60− 90 三角形中,邊長的比例是 。圖/數學大觀念

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

1

3
0

文字

分享

1
3
0
不存在的事情也可以證明?一起體會數學證明的美麗之處!——《數學大觀念》
貓頭鷹出版社_96
・2023/05/06 ・2051字 ・閱讀時間約 4 分鐘

研究數學時,有一點非常有趣,那就是你可以證明一件事情千真萬確毋庸置疑,這也正是讓數學和其他科學有所不同的原因。

在其他的科學中,我們會因為一些法則符合現實世界的情況而接受它們,但是如果新的證據出現了,這些法則是可以被反駁或是修改的。然而在數學中,一旦某個理論被證實,它就是永遠真實不變的。舉例來說,歐幾里德在兩千年前證明出「質數有無限多個」,我們便無法再說什麼或做什麼來反駁這個理論的真實性。

科技來來去去,但是定理亙古不變。正如一位偉大的數學家哈代所說

數學家其實就像畫家或詩人,大家都在創造規律,但如果數學家創造出來的規律更永恆不朽,那是因為背後是由理念所建構而成。

對我來說,證明出一個新的數學定理似乎就是讓學術地位不朽的最佳途徑。

不存在的事也可以證明

數學不僅能證明某事絕對正確,也能用來證明某事絕無可能。

-----廣告,請繼續往下閱讀-----

有時候,人們會說:「你無法證明不存在的事情不存在。」我想這大概就是說你無法證明世界上並沒有紫色的牛,因為可能哪天突然就會出現一隻。

但是在數學中,不存在是可以被證明的。舉例來說,不論你多麼努力嘗試,永遠都不可能找到相加會變成一個奇數的兩個偶數,也不可能找到一個最大的質數。

在你第一次(甚或第二或第三次)遇上這些證明時可能會覺得有點嚇人,所以絕對需要一點時間來適應。不過一旦掌握到了訣竅,你在閱讀和寫出這些證明的時候都會變得相當有趣。好的證明就像一個講得很精采的笑話或是故事,會讓你對結局非常滿意。

被遮住的淺色方格

跟你說說我第一次證明某事不可能的經驗。當我還小的時候,很喜歡各種遊戲和謎題。有天,一位朋友拿了一個遊戲裡的謎題來挑戰我,想當然我很感興趣啦。他出示一個八乘八的空白棋盤,然後拿出了 32 張一乘二大小的骨牌。

-----廣告,請繼續往下閱讀-----

他問:「你能用這32 張骨牌將這個棋盤鋪滿嗎?」我說:「那當然,只要每一排放上四張骨牌就行了,就像這樣。」

用骨牌將八乘八的棋盤撲滿。圖/數學大觀念

「非常好,」他說,「現在假設我將左上角和右下角的正方形移開了,」他在這兩個方格中各放一枚硬幣,這樣我就不能使用了。「現在你能夠用 31 張骨牌鋪滿剩下的 62 個方格嗎?」

移走兩個對角的方格後,能否還用骨牌將其補滿?圖/數學大觀念

「或許可以,」我說。

但無論我怎麼嘗試,就是無法達成,我開始思考這是否根本就不可行。

-----廣告,請繼續往下閱讀-----

如果你認為這不可行,你能夠證明這一點嗎?」我的朋友這麼問。但如果我沒有將無數失敗的可能都試過一遍,又怎麼能證明這是不可能的呢?

他隨後提出建議:「看看棋盤上的顏色。」顏色?顏色跟這一切有什麼關聯?但是接下來我看到了。既然兩個被移走的方格都是淺色的,那麼棋盤上剩下的是三十二個深色方格和三十個淺色方格。但因為每一張骨牌都會剛剛好涵蓋一個淺色方格和一個深色方格,所以三十一張骨牌就不可能鋪滿這樣的棋盤。這真是太酷了!

悄悄話

如果你喜歡上述最後一個證明,那我相信你也會欣賞下面這一個。電玩遊戲「俄羅斯方塊」中有七種不同形狀,有時候我們稱之為 I、J、L、O、Z、T 和 S。

這七個形狀可以排成一個四乘七的長方形嗎?圖/數學大觀念

這七個形狀可以排成一個四乘七的長方形嗎?

-----廣告,請繼續往下閱讀-----

每一個形狀都剛好占據四個方格,所以我們自然會猜想,這七個形狀或許可以拼成一個四乘七的長方形(拼湊的過程中,我們可以翻轉或是旋轉這些形狀),但事實上這是一個不可能的任務。你要怎麼證明這是不可能的呢?讓我們將這個長方形上色,使其含有十四個淺色方格和十四個深色方格,如下圖所示。

請注意,除了 T 這個形狀以外,每一個形狀不論放在棋盤的哪一個位置,都一定涵蓋兩個淺色方格和兩個深色方格。但是 T 涵蓋的範圍是三個某一種顏色的方格和一個另一種顏色的方格。於是,不論其他六個方塊放在哪裡,它們一定蓋住正好十二個淺色方格和十二個深色方格,剩下來給 T 的是兩個淺色方格和兩個深色方格,也就是這個要求不可能達成。

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。