Loading [MathJax]/extensions/tex2jax.js

0

36
0

文字

分享

0
36
0

強大的三角測量學!讓我們先回顧簡單的三角邊比——《數學大觀念》

貓頭鷹出版社_96
・2023/05/07 ・1623字 ・閱讀時間約 3 分鐘

三角學能讓我們解出一些無法用古典幾何學處理的幾何題目,舉例來說,考慮下面這個問題:

僅用一個量角器和一個袖珍計算機,測出附近某座山的高度。

對於這個問題,我們將提出五種不同解法。實際上,前三種解法幾乎連一丁點數學都沒用上!

方法一(費力解法)

爬上山頂,將你的計算機往下丟(這可能需要用上相當大的力氣),然後測出計算機撞到地面所需的時間(或聆聽下方背包客的尖叫聲)。如果總共花費了 t 秒,且忽略空氣阻力和終端速度帶來的影響,那麼標準的物理學方程式會指出這座山大約高 16t2 英尺。

這個方法的缺點是空氣阻力和終端速度的影響可能相當大,所以你的計算會變得不精確,而且要找回這台計算機也不太可能了。除此之外,這個方法需要用到的計時器可能就在你的計算機上。要說優點的話,則是這個方法並不需要用到量角器。

-----廣告,請繼續往下閱讀-----

方法二(輕鬆解法)

找一位友善的保育巡查員,然後用你的嶄新量角器跟他交換山峰的高度這項情報。如果你找不到任何保育巡查員,那就看看附近有沒有一位親切的男士,他一身漂亮的古銅色肌膚表示他可能花了很多時間待在戶外,因而可能對你這個問題的答案相當清楚。

這個方法的優點是你有可能會交到新朋友,而且不需要犧牲你的計算機。此外,如果你對這位深膚色男士的回答心存懷疑,你還是可以親自爬上這座山,然後採用第一個方法找出答案。這個方法的缺點是你可能會失去你的量角器,還被冠上賄賂的罪名。

方法三(聰明解法)

在嘗試方法一和方法二之前,先試著找出一個告示牌,上面標有這座山的高度。這麼做的好處是你不需要犧牲任何一項裝備。 ☺

當然,如果這三種方法都不合你意,那麼我們就必須訴諸於數學的解法,也就是本章的主題。

-----廣告,請繼續往下閱讀-----

研究三角形可以做什麼?

「三角學」(trigonometry)在字面上就是三角測量的意思,這個詞的字根源自希臘文「trigon」和「metria」。接下來我們先從分析一些經典的三角形開始。

等腰直角三角形

等腰直角三角形包含一個 90º 角,它的另外兩個角必定相同,所以兩者都是 45º(因為三角形的內角和為180º),這樣的三角形我們稱之為 45−45−90 三角形。如果兩個直角邊的長度都是1,那麼根據畢氏定理,斜邊長一定是 。請注意,任何等腰直角三角形的邊長比例都是 ,如下圖所示。

在一個 45−45−90 三角形中,邊長的比例是 。圖/數學大觀念

30− 60− 90 三角形

在一個等邊三角形中,每個邊長都相同,而且每個角的大小都是 60º。如果我們將一個等邊三角形分成全等的兩半,如下圖所示,就會得到兩個其內角分別是 30º、60º 和 90º 的直角三角形。如果這個等邊三角形的邊長為 2,那麼內含的兩個直角三角形的斜邊長就會是 2,而較短的直角邊長為 1。根據畢氏定理,較長的直角邊長會是。因此,所有 30− 60− 90 三角形的比例都會是 (也可以學學我,用 1、2、 這個簡單的順序來記憶)。特別是如果斜邊長為 1,則另外兩個邊長分別是 以及

在一個 30− 60− 90 三角形中,邊長的比例是 。圖/數學大觀念

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
0

文字

分享

1
8
0
任何整數裡都藏著的神秘數字:數字 9 可以創造出什麼樣的神奇火花?——《數學大觀念》
貓頭鷹出版社_96
・2023/05/08 ・1957字 ・閱讀時間約 4 分鐘

小時候,我最喜歡 9 這個數字了,因為它似乎蘊含許多神奇的特性。我想給你看一個例子,請照著下列充滿魔力的數學指示:

  1. 想一個在 1 到 10 之間的數(如果不滿意,你也可以挑更大的整數並使用計算機)。
  2. 將這個數乘以 3。
  3. 然後加上 6。
  4. 把得到的數字再乘以 3。
  5. 如果你願意的話,把這個數字再乘以 2。
  6. 將這個數字的所有位數相加,如果是個位數,就停止運算。
  7. 如果是二位數,那麼將兩個位數再次相加。
  8. 專心想著你的答案。

直覺告訴我你正在想的數字是 9,對不對?(如果不是的話,你或許該回過頭驗算一下。)

是什麼讓 9 這個數字如此神奇?我們會在本章看到它的一些神奇特性,然後我們甚至會考慮有另一個世界的存在,在那裡 12 和3 的功能相等而且完全合理!

觀察 9 的倍數

9 的第一個神奇特性可以從它的倍數中看出來:

-----廣告,請繼續往下閱讀-----

9、18、27、36、45、54、63、72、81、90、99、108、117、126、135、144⋯⋯

這些數目有什麼共通點?

如果你將每個數字各自的位數相加,似乎每次都會得到 9。

讓我們挑其中幾個來試試看:18 的各個位數之和是 1 + 8 = 9;27 是 2 + 7 = 9;144 則是 1 + 4 + 4 = 9。但是慢著,這裡有一個例外:99 的位數和是 18,不過 18 本身仍是 9 的倍數。所以我們得到下面這個重要結論,這件事你可能在小學就學過了,而我們稍後也會在這一章中解釋:

如果一個數字是 9 的倍數,那麼它的各個位數之和也必定是 9 的倍數(反之亦然)。

舉例來說,123,456,789 的位數和是 45(9 的倍數),所以這個數就是 9 的倍數。反過來說,314,159 的位數和是 23(非 9 的倍數),所以這個數就不是 9 的倍數。

整數的強大性質

讓我們用這個規則來了解前面的那個魔術戲法,並仔細檢驗其中的代數。你先想一個數字,我們稱之為N。乘上三倍之後你會得到 3N,在下一步變成 3N + 6。將這個數字再乘上三倍則是 3(3N + 6)= 9N + 18, 也就是 9(N + 2)。如果你決定要再乘上 2, 就會得到 18N + 36 = 9(2N+4);但不管有沒有乘上 2,你最後的答案都會是9 乘上一個整數,所以最後一定會得到 9 的倍數。(編按:這就是整數的強大性質之一,任何一個 a 倍數乘上任意整數,仍然還是 a 的倍數)

-----廣告,請繼續往下閱讀-----

當你計算這個數字的各個位數之和,你一定會再度得到一個 9 的倍數(可能是 9 或 18 或 27 或 36),而且這些數目的各個位數之和必定為 9。

還有另一個我也很喜歡用的魔術戲法,它是前面那個魔術的變形。找一個有計算機的人,請他從下列四位數中挑出一個:

3141 或 2718 或 2358 或 9999

這些數字分別是 π(詳見第八章)的前四位數、e(詳見第十章)的前四位數、連續幾個費氏數(詳見第五章),以及四位數的最大值。

-----廣告,請繼續往下閱讀-----

請他將所選的四位數乘上任何一個三位數,結果會是一個你不可能會知道的六位數或七位數。接下來請他在腦海中圈出答案中的任一位數,但不要是 0(因為它已經像是個圓圈了!),然後要他以任意順序將所有沒圈起來的數字唸出來,並且專心想著那個剩下的數字。你只要稍加注意,就可以成功地揭開答案了。

又是 9!

所以說祕密是什麼呢?請注意,能選擇的這四個數字都是 9 的倍數。

既然是從一個 9 的倍數開始,那麼乘上一個整數之後結果仍然會是 9 的倍數,因此它的位數和也一定會是 9 的倍數。隨著數字被逐一唸出,你只要將它們統統相加即可,被藏起來的那一個數字在加上之後能使總和變成 9 的倍數。舉例來說,假設他唸出 5、0、2、2、6 和 1,這些數字的總和是 16,那麼被藏起來的數字一定是 2,因為加上之後能得到最接近的 9 的倍數,也就是18;如果唸出來的數字是1、1、2、3、5、8,總和為 20,那麼隱藏的數字一定是 7,這樣才能得到 27;假設你將唸出的數字相加得到 18,他藏起來的是哪個數字?由於我們告訴過他不要圈選 0,所以缺少的數字一定是9。

謎底揭曉

但為什麼一個 9 的倍數其位數和永遠是 9 的倍數呢?讓我們來看看下面這個例子,當 3456 以 10 的次方項表示時,看起來如下式

-----廣告,請繼續往下閱讀-----

3456 = (3 × 1000) + (4 × 100) + (5 × 10) + 6

= 3(999 + 1) + 4(99 + 1) + 5(9 + 1) + 6

= 3(999) + 4(99) + 5(9) + 3 + 4 + 5 + 6

= (9 的倍數)+ 18

-----廣告,請繼續往下閱讀-----

= (9 的倍數)

運用同樣的邏輯,如果一個數字的位數和是 9 的倍數,則此數本身一定也是 9 的倍數(反之亦然:任何一個 9 的倍數其位數和一定是 9 的倍數)。

編按:任何一個整數,都可以寫成 9 的倍數+各個位數數字的和,如同上式第四行,因此只要各個位數數字的和是 9 的倍數,整個數字就會是 9 的倍數。

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

1

3
0

文字

分享

1
3
0
不存在的事情也可以證明?一起體會數學證明的美麗之處!——《數學大觀念》
貓頭鷹出版社_96
・2023/05/06 ・2051字 ・閱讀時間約 4 分鐘

研究數學時,有一點非常有趣,那就是你可以證明一件事情千真萬確毋庸置疑,這也正是讓數學和其他科學有所不同的原因。

在其他的科學中,我們會因為一些法則符合現實世界的情況而接受它們,但是如果新的證據出現了,這些法則是可以被反駁或是修改的。然而在數學中,一旦某個理論被證實,它就是永遠真實不變的。舉例來說,歐幾里德在兩千年前證明出「質數有無限多個」,我們便無法再說什麼或做什麼來反駁這個理論的真實性。

科技來來去去,但是定理亙古不變。正如一位偉大的數學家哈代所說

數學家其實就像畫家或詩人,大家都在創造規律,但如果數學家創造出來的規律更永恆不朽,那是因為背後是由理念所建構而成。

對我來說,證明出一個新的數學定理似乎就是讓學術地位不朽的最佳途徑。

不存在的事也可以證明

數學不僅能證明某事絕對正確,也能用來證明某事絕無可能。

-----廣告,請繼續往下閱讀-----

有時候,人們會說:「你無法證明不存在的事情不存在。」我想這大概就是說你無法證明世界上並沒有紫色的牛,因為可能哪天突然就會出現一隻。

但是在數學中,不存在是可以被證明的。舉例來說,不論你多麼努力嘗試,永遠都不可能找到相加會變成一個奇數的兩個偶數,也不可能找到一個最大的質數。

在你第一次(甚或第二或第三次)遇上這些證明時可能會覺得有點嚇人,所以絕對需要一點時間來適應。不過一旦掌握到了訣竅,你在閱讀和寫出這些證明的時候都會變得相當有趣。好的證明就像一個講得很精采的笑話或是故事,會讓你對結局非常滿意。

被遮住的淺色方格

跟你說說我第一次證明某事不可能的經驗。當我還小的時候,很喜歡各種遊戲和謎題。有天,一位朋友拿了一個遊戲裡的謎題來挑戰我,想當然我很感興趣啦。他出示一個八乘八的空白棋盤,然後拿出了 32 張一乘二大小的骨牌。

-----廣告,請繼續往下閱讀-----

他問:「你能用這32 張骨牌將這個棋盤鋪滿嗎?」我說:「那當然,只要每一排放上四張骨牌就行了,就像這樣。」

用骨牌將八乘八的棋盤撲滿。圖/數學大觀念

「非常好,」他說,「現在假設我將左上角和右下角的正方形移開了,」他在這兩個方格中各放一枚硬幣,這樣我就不能使用了。「現在你能夠用 31 張骨牌鋪滿剩下的 62 個方格嗎?」

移走兩個對角的方格後,能否還用骨牌將其補滿?圖/數學大觀念

「或許可以,」我說。

但無論我怎麼嘗試,就是無法達成,我開始思考這是否根本就不可行。

-----廣告,請繼續往下閱讀-----

如果你認為這不可行,你能夠證明這一點嗎?」我的朋友這麼問。但如果我沒有將無數失敗的可能都試過一遍,又怎麼能證明這是不可能的呢?

他隨後提出建議:「看看棋盤上的顏色。」顏色?顏色跟這一切有什麼關聯?但是接下來我看到了。既然兩個被移走的方格都是淺色的,那麼棋盤上剩下的是三十二個深色方格和三十個淺色方格。但因為每一張骨牌都會剛剛好涵蓋一個淺色方格和一個深色方格,所以三十一張骨牌就不可能鋪滿這樣的棋盤。這真是太酷了!

悄悄話

如果你喜歡上述最後一個證明,那我相信你也會欣賞下面這一個。電玩遊戲「俄羅斯方塊」中有七種不同形狀,有時候我們稱之為 I、J、L、O、Z、T 和 S。

這七個形狀可以排成一個四乘七的長方形嗎?圖/數學大觀念

這七個形狀可以排成一個四乘七的長方形嗎?

-----廣告,請繼續往下閱讀-----

每一個形狀都剛好占據四個方格,所以我們自然會猜想,這七個形狀或許可以拼成一個四乘七的長方形(拼湊的過程中,我們可以翻轉或是旋轉這些形狀),但事實上這是一個不可能的任務。你要怎麼證明這是不可能的呢?讓我們將這個長方形上色,使其含有十四個淺色方格和十四個深色方格,如下圖所示。

請注意,除了 T 這個形狀以外,每一個形狀不論放在棋盤的哪一個位置,都一定涵蓋兩個淺色方格和兩個深色方格。但是 T 涵蓋的範圍是三個某一種顏色的方格和一個另一種顏色的方格。於是,不論其他六個方塊放在哪裡,它們一定蓋住正好十二個淺色方格和十二個深色方格,剩下來給 T 的是兩個淺色方格和兩個深色方格,也就是這個要求不可能達成。

——本文摘自《數學大觀念:全面理解從數字到微積分的12大觀念》,2023 年 3 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。