1

2
0

文字

分享

1
2
0

你知道「地圈」嗎?承載無數生命的「地圈」是如何形成與變動的?——《丈量人類世》

商周出版_96
・2022/10/10 ・3062字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:陳竹亭

雅典娜的智慧與暴力:地圈

不時變動的地殼,就像希臘神話中兼具智慧與暴力的雅典娜(Athena),是她一體的兩面,從出生時就驚動了大地之母蓋婭,長成後卻又聰明地藉其暴力之美形塑、震撼了大地。

奧地利國會大廈前的雅典娜雕像。圖/Wikipedia

地球的陸地地景十分多樣,有高山峽谷,有平原沙漠;地表並不平靜,事實上是活力十足,有火山、熔岩,有地震,有風暴⋯⋯與無聲無息的寧靜月球形成強烈的對比。

地球屬於石質行星,「地圈」指的是地球外部固體的部分,包括地殼(crust)和上部地函(mantle)。地球中央是由地核(core)組成,這種不連續的分層結構,表示行星在形成過程中可能發生過化學凝析作用(chemical condensation),也就是從一種勻相經由溫度變化分成不同相的過程。重的元素以凝態往地心下沈,輕的物質向地表上升,甚至形成氣體。

地球半徑約 6,380 公里,有分層的結構及磁場分布。地震波(seismic wave) 顯示地下 2,900 公里處有不連續面。2,900 公里以上壓縮波(compression wave)和剪切波(shear wave)均可穿透,屬於固態結構。2,900 公里以下只有壓縮波能穿過, 且波速慢, 表示是液態物質。所以分層顯示 2,900 公里以上是鎂矽酸鹽地質,2,900 公里以下則是高壓熔融鐵,密度大的鐵核可能從熔融的矽酸鹽沉入地心。新的震波探測還顯示地核可能有液態、軟結構和硬結構,相關研究仍在進行中。

-----廣告,請繼續往下閱讀-----

鐵元素在地球上的分布, 包括地核中有 1.87×109 兆噸,地函中有 4.11×109 兆噸,地殼及海洋中約為 0.01×109 兆噸。從岩漿的分析來看,鐵佔了 8%,但是佔地球 1/3 的液態鐵是集中在地核,可能是吸收了週期表中相鄰或附近的貴重金屬元素,而下沉至地核中,所以地表存量反而較為稀少。

「地圈」指的是地球外部固體的部分,包括地殼和上部地函。圖/Wikipedia

地殼的成分

從地質化學的觀點,鐵、鎂、矽、氧組成的礦石主要有氧化鐵、橄欖石和輝石,這些礦石的含鐵量依次遞減。不含金屬的氧化矽晶體就是石英。鐵元素不僅形成地核,也改變了地函礦物的種類,同時也影響微量金屬的分布及地殼的成分。

地質學上,根據特定元素及放射性同位素存量的比例,可估計地核及地函形成的時間。目前科學家相信:如果地球是獨自形成,地球的分層,大約是發生在地球形成約 1 億年以內的最初期。

地球的上部地函,就是地球地殼至外核之間的部分,約在地殼以下到深度 400 公里處, 包含部分岩石圈(lithosphere)及軟流圈(asthenosphere)。岩石圈部分厚約 100 公里。地球內部放射性元素的衰變,應當是重要的能源之一。這種高溫可能使地函成為一個富彈性、易變形的半凝固地質,能夠產生對流。

-----廣告,請繼續往下閱讀-----

海洋地殼(ocean crust)是玄武岩岩石層,也就是沉積岩,由密度較大的矽鎂質的岩石構成,矽酸鹽成分較少,偏鹼性。現存海洋地殼年齡都在 200 百萬年之內,相對而言十分年輕。

編按:內文誤植,玄武岩岩石層,應為火成岩,而非沉積岩

陸地的花崗岩(continental crust)即為火成岩,是岩石圈的一部分,由岩漿冷卻形成花崗岩石。結晶性高,和海洋地殼共同成為地球的最外層,主要由含較輕之矽鋁質的岩石,富鋁、鈉和鉀。鐵和鎂反而較少,偏酸性。密度較海洋地殼小。

上部地函,就是地球地殼至外核之間的部分,約在地殼以下到深度 400 公里處, 包含部分岩石圈及軟流圈。圖/Wikipedia

變動的地殼:分裂的大西洋脊與大陸飄移

大陸地殼浮在地函之上,厚度在 20 至 80 公里之間,約有 38 億年的壽命。地殼的變動是海洋隱沒帶(subduction zone)延伸入大陸地殼下方,沉積物帶入地函,變質、分解釋出二氧化碳,讓海洋生物可以再利用。

中大西洋洋脊(mid-Atlantic ridge)是一個縱切大西洋及北冰洋、大部分位於海底的活火山山脈。由北緯 87 度縱貫延伸至南緯 54 度,恰好是地質板塊邊界(plate boundary)的交會處。

-----廣告,請繼續往下閱讀-----
中大西洋洋脊(圖中間縱向黃綠色處)的測深圖。圖/Wikipedia

地球內部放出的熱,對地表溫度幾乎沒有影響,但是地函的對流能使地表沉積物拉入地函中,再分解出二氧化碳,最後由火山噴出。熔岩與火山顯示地函的溫度應該仍然非常高,超過 1000 ℃,岩漿的運動提供了地球表面「建造」地殼的活力。自然界地表的地質傾軋與角力,可能是地球生機乍現的起點。

「海底擴張」(oceanic spreading)的活動,主要是由中洋脊的地底火山自海底的地殼中央噴射而出,形成了新地殼。地殼向東西兩側邊延伸,每年以 40-90 毫米(mm/yr)的速率擴展,至今仍然在持續進行,這也是大陸飄移理論最好的證據。

1915 年, 德國的偉格納(Alfred Lothar Wegener, 1880-1930)提出「大陸漂移說」(continental drift theory),認為大陸地塊會隨地質年代而漂移,這個假說在當時很少人真正給予重視。直到 1950-60 年代,放射性定年法的技術大為改進,才使得研究地球古岩石或沉積磁性的古地磁學異軍突起。

1959 年, 美國地質調查局(USGS) 和澳洲國立大學(ANU)的科學家競相發表大西洋脊兩側海底沈積岩對稱的註記了過去世代的「地磁反轉」(geomagnetic reversal)尺標。地球磁場在地球歷史中,南北極有非週期性的變換現象,可由大西洋海底地殼的磁性隨地質年代的變化獲得。地磁反轉的清晰磁條可以準確地推算出地質年代,再測量其到中洋脊心的距離,就可以估計當時海洋擴展的速率。

-----廣告,請繼續往下閱讀-----
圖/商周出版提供

1963 年,英國的維尼(Frederick John Vine, 1939-)和馬太(Drummond Hoyle Mathews, 1931-1997)結合了地磁反轉和海洋擴張來支持大陸漂移說(continental drift theory)。加拿大的莫雷(Lawrence Whitaker Morley, 1920-2013)也同時獨立發表了相同的學說,但他提出發表的論文遭到拒絕,數年後才正式出版。

根據大陸漂移的理論,上部地函及地殼的岩圈分裂成幾塊「板塊」,這些板塊相互的傾軋運動,決定了地殼板塊邊緣的聚合或分離、造山運動或是海溝形成(trench formation)、還有轉形斷層(transformation fault)、地震或是火山活動。這些現象必然都和地函的對流運動之動力變化有關,但是理論有很多種,研究也都還在進行中。

宏觀來看,不僅地圈的一顰一動都與陸地生命體息息相關。地圈、水圈與氣圈的對流層也緊緊地和生物圈結合在一起,其構成多樣多姿的行星生命世界,是最令人屏息的宇宙景象。

台灣島的生成

台灣島正好地處於地質活躍帶上,西為歐亞板塊、東北是琉球板塊、東鄰菲律賓板塊及南方的巽他板塊的交界處。是世界上最頻繁的地震活動地區之一。台灣島的中央山脈主要是由 600 萬年前的蓬萊造山運動—菲律賓板塊向西擠壓歐亞大陸板塊而形成。至今,菲律賓板塊仍以每年 8.2 公分的超高速度持續向西北移動。

-----廣告,請繼續往下閱讀-----

相對於 46 億年的地球,600 萬年的台灣是非常年輕的島嶼,那時古猿人才剛在非洲大陸出現呢。我們身在這個蓊鬱之島上,不能不知道和她有關的地質、地理與自然生態,當然還有人文、歷史及社會的形成過程。

——本文摘自《丈量人類世:從宇宙大霹靂到人類文明的科學世界觀》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
0

文字

分享

1
2
0
【成語科學】滄海桑田:無時無刻不在改變的地貌
張之傑_96
・2023/06/30 ・1217字 ・閱讀時間約 2 分鐘

東晉的葛洪,號抱朴子,是位道家人物,也是位醫藥學家、博物學家。

他寫過一本《神仙傳》,書中介紹女神仙麻姑,說她壽命極長:

「已見東海三為桑田」(已三度見到東海變成桑田)。

這就是成語「滄海桑田」的由來。

桑田,泛指農田。圖/Envato Elements

滄海桑田,字面的意思是:大海變成桑田,桑田變成大海。桑田,泛指農田。這個成語比喻環境變遷,人事無常,讓我們造個句吧。

-----廣告,請繼續往下閱讀-----
  • 新北市五股區一帶,原有大片沼澤,現已消失殆盡,不免有滄海桑田之嘆。
  • 滄海桑田,有時我們有生之年就能看到,新竹香山的海埔新生地就是個例子。

知道了成語滄海桑田的含意,也學會了怎麼使用這個成語,接下去要談談它的科學意義了。小朋友首先得了解,滄海桑田確有其事,不僅僅只是個形容詞而已。

當年章老師在國中任教時,曾帶領學生到山上採集昆蟲標本。在山路一側的崖壁上,無意中看到貝類化石。細看之下,有牡蠣、貽貝、蛤蜊、海扇等,還有棘皮動物類的海膽。牠們可都是海洋生物,怎會跑到山上?章老師趁機給同學們上了一堂地球科學課程。

地球從地表到地心分成三層:地殼、地函和地核。圖/維基百科

地球從地表到地心,明顯分成三層:地殼、地函和地核。地殼由板塊拼合而成,可說是「浮」在地函上。約 600 萬年前,菲律賓海板塊向北移動,撞向歐亞板塊,將中國大陸東南沿海的大陸斜坡抬高,逐漸形成一座島嶼——就是我們台灣啊!到 300 萬年前,大致已成為今天的樣貌。

既然台灣島是大陸斜坡隆起形成的,我們在山上找到海洋生物化石也就不足為奇了。菲律賓海板塊撞向歐亞板塊,這一造山運動迄今仍在進行,中央山脈每年仍升高約 3 公分呢!

-----廣告,請繼續往下閱讀-----

台灣海峽很淺,大部份不到 100 公尺。冰河時期,大量的水變成冰,堆積在南北極和高緯度地,造成海水減少,海面下降,這時台灣海峽就露出海面。冰河期結束,大地回暖,海面上升,台灣和大陸再次隔海相望。自從台灣島形成以來,已不知分合多少次了。

2022 年台灣的樣子!圖/維基百科

最近的一次冰河期,發生在距今 2.5~1.8 萬年前,海面較現今約低 130 公尺,台灣海峽變成陸地,許多動物從大陸徒步遷徙到台灣,包括大象、犀牛和古人類(左鎮人)。左鎮人距今約 1 萬年,和北京周口店發現的山頂洞人差不多同一時期。

我們能想像台灣島是從海中隆起的嗎?我們能想像台灣海峽曾經乾涸成陸地嗎?滄海桑田豈只是個形容詞而已!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

2
1

文字

分享

0
2
1
板塊與斷層並不相同,從土耳其敘利亞大地震了解大地之母
PanSci_96
・2023/03/12 ・2981字 ・閱讀時間約 6 分鐘

今年 2 月 6 日,土耳其大地震的影像,透過國際媒體、社群網路不斷轉發,讓世人再次感受到大自然的無情,也讓身處地震帶上的台灣,重燃關於地震的防災意識。

而同樣身處地震帶上的我們,對於地震又理解多少呢?

這次土耳其的地震規模有多大?

今年2月 6 號,土耳其當地時間凌晨四點,發生了地震矩規模(Mw) 7.8 的強震(美國地質調查局 USGS 的測定數據);震央位於土耳其南部與敘利亞接壤,有著 170 萬人口的加濟安泰普省,震源深度僅僅只有 17.9 公里,屬於極淺層地震。

不幸的是,大約 9 小時之後,距離震央東北方不到 100 公里的地方,再度發生規模 7.5 的地震,深度甚至只有 10 公里,最大震度甚至高達麥卡利震度的 X 度,相當於台灣的 7 級地震。

光是在土耳其境內,強震造成四萬一千多人死亡、十萬多人受傷,是土耳其百多年來死亡人數最多的地震。

-----廣告,請繼續往下閱讀-----

土耳其為什麼會發生大地震?

為土耳其百多年來,死亡人數最多的地震。圖/維基百科

地球表面包含地殼和一小部分的地函質地剛硬的地方,被稱為「岩石圈」,它並不是完整的一塊,而是分裂許多個「板塊」。中洋脊新生的海洋地殼會推著兩側的板塊不斷向外擴,最終在海溝下沉回到地函,完成循環。

然而,這些板塊彼此運動的速度和方向並不一致,彼此之間會有碰撞、擠壓、摩擦、分離等等的相對運動,形成相互碰撞的「聚合型板塊邊界」、相互分離的「分離型板塊邊界」以及水平錯動的「轉形型板塊邊界」(Transformation Fault,臺灣中學課本常翻作「錯動型板塊邊界」)。

實際攤開地圖,土耳其大部分區域都位在高原上;但在腳底下,土耳其的土地正不偏不倚的落在四個板塊的交界處:北邊的歐亞板塊、南方有阿拉伯板塊、西南方是非洲板塊,大部分國土則位於安納托利亞板塊上。

這些板塊相互推擠,創造了土耳其豐富的高原地貌,也造就了頻繁的地震。

-----廣告,請繼續往下閱讀-----

地震發生的原因不只是因為板塊碰撞

我們常以「板塊的碰撞」作為地震的原因,雖然板塊運動確實會伴隨地震發生,卻不能直接解釋地震發生的機制。

板塊新生及重回地函的地方,構成了板塊的交界,它可以是中洋脊、海溝,如果該二板塊交界處的兩側都是陸地,則可能擠壓形成山脈。

就像拿兩塊吐司互相擠壓,會變形的,不是只有接觸面而已,整塊吐司都會因為兩側施加的壓力,在各處形成變形、甚至破裂。而這個破裂面,就是斷層;斷層錯動的瞬間,就會引發地震。

因此,斷層不一定要位於板塊交界上,而是只要岩層有受力的地方,就有可能產生斷層,它可以位在板塊交界的「附近」,也可以是位在遠離板塊交界的地方。

-----廣告,請繼續往下閱讀-----

當然,因板塊的相對運動容易讓應力累積在板塊交界處,在板塊交界附近的斷層數量也就比較多。

這次土耳其錯動的斷層是?

土耳其正落在四個板塊的交界處。圖/維基百科

前面提到,土耳其剛好就位於安納托利亞板塊、歐亞板塊阿拉伯板塊與非洲板塊的交界處。由於阿拉伯板塊長年向北運動,又受到北方歐亞板塊的阻擋,因此被迫轉向西北方推擠安納托利亞板塊,使得土耳其國土被逆時針擠出。

在四個板塊的相互推擠下,土耳其境內形成兩條較大的岩層破裂帶,一條是東南方的「東安納托利亞斷層系統(EAF)」,另一條則是橫貫整個國境北部「北安納托利亞斷層系統(NAF)」。

這次土耳其大地震的事發地「東安納托利亞斷層」,形成的主要原因正是阿拉伯板塊長年向西北推擠安納托利亞板塊所產生的應力,使得岩層沿著板塊邊界,以東北西南的方向破裂。除此之外,在這條斷層的北側也發展出好幾條東西方向延伸的破裂面,形成東安納托利亞斷層的分支,也是這次大地震第二次主震發生的位置。

-----廣告,請繼續往下閱讀-----

根據美國地質調查所的紀錄,這些破裂面,已經超過一百年沒有明顯的地震發生,表示這附近的岩層,已經長期處在應力累積、沒有宣洩的狀態。在阿拉伯板塊持續向北推擠的形況下,岩層終究無法承受,並沿著「東安納托利亞斷層系統」的數條破裂面發生水平方向的錯動,造成了這次的地震。

根據歐洲的人造衛星影像結果,這次錯動的程度之驚人,第一次主震發生的地方,地層左右位移了六公尺,第二次主震更到達八公尺。

為何地震為何總是突然發生,
而不是緩慢的釋放應力?

現在最廣為人知的地震理論,是在 1906 年舊金山大地震時,美國的地質學家李德,觀察加州的畜牧農場的圍籬在地震後發生的錯位情形,並於 1911 年提出了「彈性回跳理論」;其認為斷層附近的岩層先是受到某種外力而發生變形,當斷層面的摩擦力最終無法抵抗外力時,岩層將沿著斷層面一口氣錯動、釋放累積的能量,就產生了地震。

有了這個理論,我們還能推測,已經存在的斷層因為本身就是岩層破裂的地方,結構較為脆弱,當岩層繼續受到外力擠壓變形,就容易再次沿著斷層方向錯動。就像是一片玻璃摔過之後,裡面產生微小的裂痕,雖然玻璃沒有碎掉,但可以預期,如果這塊玻璃再摔到一次,這些微小的裂痕可能就變成了破口,甚至徹底碎裂。

-----廣告,請繼續往下閱讀-----

至於讓斷層附近的岩層變形的「外力」除了板塊運動外,地表的侵蝕作用、火山活動等,都是可能的原因。

火山活動亦為使岩層變形的外力之一。圖/Envato Elements

台灣為什麼有許多斷層?

回頭看,位於板塊交界帶上的台灣,在菲律賓海板塊與歐亞板塊的擠壓下,從北到南遍布了大大小小的斷層。根據經濟部地質調查所在 2021 年公佈的數據,台灣共有 36 條活動斷層。

至於板塊交界處則是在花東縱谷。菲律賓海板塊與歐亞板塊的邊界,從北方的琉球海溝劃過台灣的下方,向南延伸到馬尼拉海溝;在地表上,這條邊界一路從花蓮北端貫穿整個花東縱谷平原。

從一千五百萬年前開始,菲律賓海板塊就不斷地朝西北方向推擠,如今仍以每年 7~8 公分的速度,向著歐亞板塊邁進,海岸山脈也因此不斷衝向中央山脈。

-----廣告,請繼續往下閱讀-----

我們可以將台灣岩盤的變形狀況想像成是推土機推雪:海岸山脈是推土機,中央山脈則是雪堆。當推土機推著雪堆向前行時,雪堆前、後和底部的變形最強烈。在海岸山脈的推擠下,變形量最高的地方集中在西部平原、花東縱谷以及中央山脈的底部。由於中央山脈底部岩層溫度過高,只會產生變形;而西部平原、花東縱谷則成為了斷層最密集、地震好發的地方。

和土耳其一樣身處地震帶的我們,除了讚嘆大自然的鬼斧神工之外,具備更健全的地震知識、學習如何與地震災害共處,並盡可能降低地震帶來的傷害,成了我們每個人的重要課題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----