Loading [MathJax]/extensions/MathZoom.js

0

1
0

文字

分享

0
1
0

搖滾響起來,人就嗨起來──音樂關鍵字|EP8:搖滾夢想

音樂關鍵字Unlocking Music_96
・2022/07/22 ・517字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

我們日常中無處不在的音樂,除了療癒身心,更可以透過聲音的特性,找出藏在背後的科學小知識!
由客家電視製作的《音樂關鍵字》系列動畫因此誕生,是臺灣首部原創音樂科普動畫劇集。以校園生活為背景,透過生動幽默、溫馨感人的故事劇情,運用 3D 動畫串起聲音與音樂的物理學、心理學、生理學,並量身訂做原創客語歌曲。
讓音樂成為你生活中,最浪漫的科學!

音樂關鍵字:泛音、雜質、搖滾樂

嗨起來!年輕就是要搖滾、要反叛!

舞台上,電吉他手激動地彈著吉他,汗如雨下,整個會場轟耳欲聾,聽眾們沈溺其中,這音樂真是太爽了啦。

沒錯,搖滾樂的暢快淋漓,完全背離穩定純淨的美聲路線,充滿爆發力的搖滾樂,追求的是嘈雜的渲染力。而嘈雜的渲染力從哪裡來?

為了達到更刺激、更有渲染力的效果,電吉他手們除了特別練就有力度感的同音推弦等技巧,也會加上效果器的輔助才能達到嘈雜效果。這背後的原理得從「泛音」說起。

-----廣告,請繼續往下閱讀-----

最終章,讓勇於追夢的阿棋和我們細細說明。

-----廣告,請繼續往下閱讀-----
文章難易度
音樂關鍵字Unlocking Music_96
8 篇文章 ・ 5 位粉絲
生活裡無處不在的聲音,其實是最浪漫的科學—換個方式「尞/聊」音樂。 提到音樂,多數人總以為那是右腦的事,是抽象的知覺、感性的領悟,但其實音樂也有它很左腦、很理性、很科學的一面,生活裡無處不在的聲音,其實是最浪漫的科學。 https://www.instagram.com/unlockingmusic2022/ https://hakkatvmar100.wixsite.com/unlockingmusic

0

0
0

文字

分享

0
0
0
環境共生的牆:冠軍磁磚如何幫建築降溫
鳥苷三磷酸 (PanSci Promo)_96
・2025/08/29 ・4556字 ・閱讀時間約 9 分鐘

本文與 冠軍磁磚 合作,泛科學企劃執行

夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)

這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。

產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect)/ 照片:© Colt International、Arup Deutschland、SSC GmbH

在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。

-----廣告,請繼續往下閱讀-----

聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。

不只種藻,還能「種磚」

要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。

作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。

這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。

-----廣告,請繼續往下閱讀-----

想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。

菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡/ 照片:©https://ecovative.com/

目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。

生物混凝土:讓苔蘚在牆上自然降溫

藻類、真菌還不夠?那就再「種」苔蘚。

西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。

這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。 

-----廣告,請繼續往下閱讀-----

這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。   

不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?

外牆乾掛系統:利用空氣與模組化磁磚實現隔熱

如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」

它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。

-----廣告,請繼續往下閱讀-----
傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔 / 圖片來源:冠軍建材

為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。

在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%

屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C

這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。

-----廣告,請繼續往下閱讀-----
冠軍建材推出了大理石、石紋等多種質感的磁磚,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試。/ 圖片來源:冠軍建材

雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。

顛覆想像:三大建築降溫策略

到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。

1. 水源熱泵:讓水域成為建築的低耗電恆溫空調

第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。

-----廣告,請繼續往下閱讀-----

想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。

工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。

研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。

2. 動態遮陽外牆:讓建築自己追著太陽動

-----廣告,請繼續往下閱讀-----

第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。

位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋 / 圖片來源:shutterstock

每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。

這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。

3. 電致變色智慧玻璃:光與熱量隨心控制

最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。

它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。

結語

從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。

展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
36 篇文章 ・ 8 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
腸道與聽力的神秘連結:你的聽覺健康可能藏在腸胃裡?
雅文兒童聽語文教基金會_96
・2025/02/20 ・3665字 ・閱讀時間約 7 分鐘

  • 作者 / 雅文基金會聽語科學研究中心 研究員|羅明

腸道的狀態會影響身體的健康,是現代人熟悉的保健觀念,就像廣告台詞所說的:胃腸顧好,人就快好。腸道狀態的影響力,可能比我們想像的多更多。已經有愈來愈多的研究報告指出,腸道狀態與聽覺系統之間,其實也有某種關聯。聽的好不好跟肚子好不好,究竟有什麼關係?讓我們繼續看下去。

腸腦軸線是什麼

開始之前,要先介紹「腸腦軸線」(gut-brain axis)的概念。研究證實,大腦的運作與腸道中的微生物群有所關聯。腸道若出現微生態失調(gut dysbiosis),除了生活品質水準降低 [1],大腦功能與外在行為也會受到影響。例如:容易無法集中精神 [2] [3]、睡眠品質不佳 [4],甚至是心理功能失調 [5] 等種種情況。

同時也有研究發現,某些大腦方面的失序和疾病,會伴隨腸道微生態失調的情況 [6]。例如:認知功能方面出現障礙的阿茲海默症(Alzheimer’s disease; [7] [8]),以及在疾病早期常先出現行動功能障礙的帕金森症 (Parkinson’s disease; [9] )。

大腦的運作與腸道中的微生物群有所關聯。圖/AI 創建

至於腸道與大腦是如何互相影響彼此,目前的研究告訴我們,大致上是透過幾條途徑:
1. 迷走神經(vagus nerve)
2. 下視丘-腦垂體-腎上腺系統(hypothalamic-pituitary-adrenal axis,簡稱 HPA 軸)
3. 免疫系統(immune system)
4. 神經傳導素(neurotransmitters)
5. 細菌代謝物(bacterial metabolites)

-----廣告,請繼續往下閱讀-----

總之,腸道菌相與身心健康之間,不論是在生理或心理的層面,都息息相關。而有另一批研究的結果指出,不只是大腦所在的中樞系統,這種關聯性還擴及到了「聽覺」所在的感官系統。尤其是迷走神經與免疫系統,我們將會提到它們在聽覺系統運作中的角色。

近年研究新發現:耳腸腦軸線

聽的好不好,也就是聽覺系統是否功能良好,同樣是身心健康重要的一環。聽覺系統本身可再分為周邊(含外耳、中耳、內耳)與中樞(含延腦、橋腦、中腦、大腦)等兩個子系統,而聲音一開始從外界進入聽覺系統,到最後能否解讀成功,取決於兩個子系統是否都能順利運作。

直到最近,種種間接顯示腸道狀態影響聽覺功能的資訊,引起了一些研究者的注意。例如,有一種基因同時與腸道和耳朵的發育有關,而先天性巨結腸症(或稱赫司朋氏症,Hirschsprung disease)的動物研究發現,這種基因的突變可能導致聽力損失 [10]

由於相關的資訊愈來愈多,近來有研究者進行了系統性的回顧,並根據得到的結果指出,人體中很可能還有一種可稱之為「耳腸腦軸線」(ear-gut-brain axis)的系統 [11] [12] [13] [14]。接下來,讓我們看看有哪些研究,支持著人體存在耳腸腦軸線的想法。

-----廣告,請繼續往下閱讀-----

人體中很可能存在一種「耳腸腦軸線」系統。圖/AI創建

迷走神經串接耳與腸

人類的腦神經中,迷走神經最長也分布最廣。這組神經起於延腦,而後下行至頸、胸、腹等部位。它在自主神經系統(autonomic nervous system)有著重要的角色,其中之一是自動調節消化系統的活動。觸及腸道與大腦的神經纖維中,訊息是雙向往返的,約有 10% 至 20% 的部分是從大腦往腸道傳送,而有 80% 至 90% 的部分則是從腸道送往大腦 [15]

迷走神經有許多分支,其中一支延伸到外耳之上,稱爲迷走神經耳分支(auricular branch)。有一個對象是成年女性的研究發現,如果在迷走神經耳分支施予刺激,會有助於消解發炎性腸道疾病(inflammatory bowel disease,簡稱 IBD)的疼痛感,以及減低症狀的嚴重程度 [16]。而這一類刺激方法,用於治療耳鳴(tinnitus)似乎也有效果,例如:減少耳鳴相關的症狀,以及舒緩耳鳴帶來的壓力感 [17] [18]

發炎性腸道疾病除了引發疼痛感,也可能伴隨耳鳴相關症狀。圖/AI 創建

發炎也會讓人聽的不好

我們在文章開頭時提到,由於腸腦軸線的存在,腸道失調與大腦異常顯現出清楚的關聯性。如果沿著相同的思路,則可預期腸道一旦出現異狀,透過耳腸腦軸線的作用,聽覺系統應該也會連帶發生問題。實際上, 在 IBD 這一類疾病的觀察中,的確不同的研究也有著類似的發現。

-----廣告,請繼續往下閱讀-----

無論是在外耳、中耳或內耳,都有研究資料顯示,這些部位的某些異狀會跟 IBD 有所關聯 [19]。尤其是感音性聽力損失,是 IBD 患者最常見的耳科疾病。有研究者回溯了32位IBD病患者的資料,結果發現其中的 22 位兼有感音性聽損,比例將近七成,而且在之中的 19 位,並無法找到其他能夠解釋聽損的原因 [20]

還有進一步比較潰瘍性結腸炎(ulcerative colitis)與克隆氏症(Crohn’s desease)兩群患者的研究也報告了一致的發現 [21]。相較於身體健康的對照組,感音性聽損在這一群患者有著較高的盛行率,而顯示聽損的聲音頻率則在 2000Hz、4000Hz 與 8000Hz 等高頻的範圍。值得注意的是,研究者也指出這些患者的聽力損失與年齡之間並沒有顯著的關係。

感音性聽力損失是發炎性腸道疾病患者最常見的耳科疾病。圖/AI 創建

此外,大腦中的微膠細胞(microglia)在活化時會釋放發炎物質,而聽力功能的異常也可能與這種發炎反應有關。已有動物研究指出,在噪音環境引起耳鳴與聽力損失之後,中樞聽覺系統的微膠細胞出現了較高的活化狀態 [22]

聽覺與消化的你來我往

就如迷走神經的研究指出的,聽覺與消化之間的關係,可能也是一種雙向的互動。除了聽力損失伴隨腸道發炎出現之外,新近的研究還透露出,聽音樂,對於腸道來說也有著補充益生菌的效果。研究者在實驗室餵養 30 天的老鼠身上發現,餵養期間也接觸音樂的老鼠們,在第 25 天的體重,顯著高於沒有接觸音樂的老鼠;不僅如此,那些每天固定聽音樂六個小時的老鼠們,腸道裡的壞菌減少了,腸道的菌相也因此變得更好了 [23]。沒想到,聽覺系統不只是接收訊息的管道而已,還可能在無形中影響著消化系統的運作。

-----廣告,請繼續往下閱讀-----

「耳腸腦軸線」的想法,對於聽力保健而言,或許帶來另一個思考的角度:除了瞭解如何避免聽覺系統的器官受到損傷,多加留意消化系統是否正常運作,也可能是同樣重要的事情。如此一來,除了「胃腸顧好,人就快好」,未來還可以再說:腸道好,「聽」也好。

  1. Gracie, D. J., Williams, C. J., Sood, R., Mumtaz, S., Bholah, M. H., Hamlin, P. J., et al. (2017). Negative effects on psychological health and quality of life of genuine irritable bowel syndrome–type symptoms in patients with inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 15, 376–384. https://doi.org/ 10.1016/j.cgh.2016.05.012
  2. van Langenberg, D. R., & Gibson, P. R. (2010). Systematic review: Fatigue in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 32, 131–143.
  3. D’Silva, A., Fox, D. E., Nasser, Y., Vallance, J. K., Quinn, R. R., Ronksley, P. E., & Raman, M. (2022). Prevalence and risk factors for fatigue in adults with inflammatory bowel disease: A systematic review with meta-analysis. Clinical gastroenterology and hepatology: the official clinical practice. journal of the American Gastroenterological Association, 20(5), 995–1009.e7. https://doi.org/10.1016/j.cgh.2021.06.034
  4. Van Langenberg, D. R., Yelland, G. W., Robinson, S. R., and Gibson, P. R. (2017). Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United European Gastroenterology Journal, 5, 579–587. https://doi.org/10.1177/2050640616663397
  5. Ng, J. Y., Chauhan, U., Armstrong, D., Marshall, J., Tse, F., Moayyedi, P., et al. (2018). A comparison of the prevalence of anxiety and depression between uncomplicated and complex Ibd patient groups. Gastroenterology Nursing, 41, 427–435. https://doi.org/10.1097/ SGA.0000000000000338
  6. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: a review. Annals of Neurology, 81, 369–382. https://doi.org/10.1002/ana.24901
  7. Vogt, N. M., Kerby, R. L., Dill-Mcfarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 1–11. https://doi.org/10.1038/s41598-017-13601-y
  8. Haran, J. P., Bhattarai, S. K., Foley, S. E., Dutta, P., Ward, D. V., Bucci, V., et al. (2019). Alzheimer’s disease microbiome is associated with dysregulation of the anti- inflammatory P-glycoprotein pathway. mBio, 10, e00632–e00619. https://doi.org/10.1128/ mBio.00632-19
  9. Romano, S., Savva, G. M., Bedarf, J. R., Charles, I. G., Hildebrand, F., & Narbad, A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. npj Parkinson’s Disease, 7, 1–13. https://doi.org/10.1038/s41531-021-00156-z
  10. Ohgami, N., Ida-Eto, M., Shimotake, T., Sakashita, N., Sone, M., Nakashima, T., et al. (2010). C-ret–mediated hearing loss in mice with Hirschsprung disease. Proceedings of the National Academy of Sciences, 107, 13051–13056. https://doi.org/10.1073/pnas.1004520107
  11. Denton, A. J., Godur, D. A., Mittal, J., Bencie, N. B., Mittal, R., & Eshraghi, A. A. (2022). Recent advancements in understanding the gut microbiome and the inner ear Axis. Otolaryngologic Clinics of North America, 55, 1125–1137. https://doi.org/10.1016/j.otc.2022.07.002
  12. Graham et al., 2023
    Graham, A. S., Ben-Azu, B., Tremblay, M. È., Torre, P., 3rd, Senekal, M., Laughton, B., van der Kouwe, A., Jankiewicz, M., Kaba, M., & Holmes, M. J. (2023). A review of the auditory-gut-brain axis. Frontiers in Neuroscience, 17, 1183694. https://doi.org/10.3389/fnins.2023.1183694
  13. Kociszewska, D., & Vlajkovic, S. M. (2022). The association of inflammatory gut diseases with neuroinflammatory and auditory disorders. Frontiers in Bioscience-Elite, 14:8. https://doi.org/10.31083/j.fbe1402008
  14. Megantara, I., Wikargana, G. L., Dewi, Y. A., Permana, A. D., & Sylviana, N. (2022). The role of gut Dysbiosis in the pathophysiology of tinnitus: a literature review. International Tinnitus Journal, 26, 27–41. https://doi.org/10.5935/0946-5448.20220005
  15. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9:44. https://doi.org/10.3389/fpsyt.2018.00044
  16. Mion, F., Pellissier, S., Garros, A., Damon, H., Roman, S., and Bonaz, B. (2020). Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectronics in Medicine, 3, 5–12. https://doi.org/10.2217/ bem-2020-0004
  17. Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 133, 378–382. https://doi.org/10.3109/00016489.2012.750736
  18. Ylikoski, J., Markkanen, M., Pirvola, U., Lehtimäki, J. A., Ylikoski, M., Jing, Z., et al. (2020). Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction. Frontiers in Psychology, 11:2442. https://doi.org/10.3389/ fpsyg.2020.570196
  19. Fousekis, F. S., Saridi, M., Albani, E., Daniel, F., Katsanos, K. H., Kastanioudakis, I. G., et al. (2018). Ear involvement in inflammatory bowel disease: a review of the literature. Journal of Clinical Medicine Research, 10(8), 609–614. https://doi.org/10.14740/jocmr3465w
  20. Karmody, C. S., Valdez, T. A., Desai, U., & Blevins, N. H. (2009). Sensorineural hearing loss in patients with inflammatory bowel disease. American Journal of Otolaryngology, 30, 166–170.
  21. Akbayir, N., Çaliş, A. B., Alkim, C., Sökmen, H. M. M., Erdem, L., Özbal, A., et al. (2005). Sensorineural hearing loss in patients with inflammatory bowel disease: A subclinical extraintestinal manifestation. Digestive Diseases and Sciences, 50, 1938–1945. https://doi.org/10.1007/ s10620-005-2964-3
  22. Wang, W., Zhang, L. S., Zinsmaier, A. K., Patterson, G., Leptich, E. J., Shoemaker, S. L., et al. (2019). Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biology, 17:e3000307. https://doi.org/10.1371/ journal.pbio.3000307
  23. Niu, J., Xu, H., Zeng, G. et al. (2023). Music-based interventions in the feeding environment on the gut microbiota of mice. Scientific Reports, 13, 6313. https://doi.org/10.1038/s41598-023-33522-3
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
63 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。