Loading [MathJax]/extensions/tex2jax.js

0

2
0

文字

分享

0
2
0

音樂不只治癒心靈,也可以治療大腦──音樂關鍵字|EP6:你好!我叫江東平

音樂關鍵字Unlocking Music_96
・2022/07/08 ・542字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

我們日常中無處不在的音樂,除了療癒身心,更可以透過聲音的特性,找出藏在背後的科學小知識!

由客家電視製作的《音樂關鍵字》系列動畫因此誕生,是臺灣首部原創音樂科普動畫劇集。以校園生活為背景,透過生動幽默、溫馨感人的故事劇情,運用 3D 動畫串起聲音與音樂的物理學、心理學、生理學,並量身訂做原創客語歌曲。

讓音樂成為你生活中,最浪漫的科學!

音樂關鍵字:音樂治療、自閉症

「你好我叫江東平。」

「你好我叫江東平。」

「你好我叫江東平。」

同一句話說三次,不是為了強調這句話特別重要,而是因為高中生東平有著和常人不一樣的大腦結構,他智力正常,只是由於大腦中聽覺區附近、額葉邊緣系統的結構或功能異常,導致他即使想要與人互動,卻擁有不夠多的詞彙,常常發生同樣的字句重複出現的狀況。

-----廣告,請繼續往下閱讀-----

不過,若透過音樂治療,便可以讓自閉患者的聽覺區附近、額葉、邊緣系統三者連結變強,進而改善社交能力、共享式注意力以及語言能力。透過循序漸進的音樂治療,江東平也能和朋友攜手共譜樂曲喔!

-----廣告,請繼續往下閱讀-----
文章難易度
音樂關鍵字Unlocking Music_96
8 篇文章 ・ 5 位粉絲
生活裡無處不在的聲音,其實是最浪漫的科學—換個方式「尞/聊」音樂。 提到音樂,多數人總以為那是右腦的事,是抽象的知覺、感性的領悟,但其實音樂也有它很左腦、很理性、很科學的一面,生活裡無處不在的聲音,其實是最浪漫的科學。 https://www.instagram.com/unlockingmusic2022/ https://hakkatvmar100.wixsite.com/unlockingmusic

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
沒有樂器,也可以有音樂!人類與音樂的悠久故事——《傾聽地球的聲音》
商周出版_96
・2022/12/14 ・3239字 ・閱讀時間約 6 分鐘

人類的音樂比任何樂器都古老

早在我們雕刻象牙或骨頭之前許久,肯定已經使用聲音戲耍出旋律、和聲與節奏。現代人類所有族群都會唱歌、演奏樂器和舞蹈。

這種普遍性意味著我們的祖先早在發明樂器以前,已經是音樂的愛好者。如今所有已知的人類文化之中,音樂都出現在類似情境裡,比如愛情、搖籃曲、治療和舞蹈。這麼說來,人類的社會行為通常少不了音樂。

如今所有已知的人類文化之中,音樂都出現在類似情境裡,例如搖籃曲。圖/pixabay

化石證據同樣顯示,五十萬年前的人類已經擁有能發出現代口語和歌聲的舌骨。因此,在我們製造樂器之前幾十萬年,人類的喉嚨就已經能夠說或唱出語句或歌詞。

口語和音樂何者先出現,目前還無從確定。其他物種也具有感知語言和音樂所需的神經組織,顯示我們的語言和音樂能力只是原有能力的精緻化。

-----廣告,請繼續往下閱讀-----

左右腦的劃分

人類以左腦處理口說語言(其他哺乳類或許也是在同樣的部位處理同類的聲音),其他聲音則是傳送到負責處理音樂的右腦。或許左右腦共同處理,左腦利用聲音在不同時間呈現的細微差異理解語義和語法,右腦則用音頻的差異來捕捉旋律和音色等細節。

但這個劃分並非絕對,顯示語言和音樂之間沒有明確的分隔線。語言的抑揚頓挫和音韻會啟動右腦,歌曲的語義內容卻是點亮左腦,那麼,歌曲和詩文讓我們左右腦的運作相互交織。

所有的人類文化都有這種現象,都將文字融入歌曲裡,而口說語言的意義有一部分來自語言本身的音樂性。在嬰兒時期,我們根據母親聲音的速度和音頻辨識她。成年以後,我們用音頻、拍子、力度、音質和音調傳情表意。

在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去:澳洲的歌行(song line);中東與歐洲的禱文吟誦、聖歌和詩篇;桑族(San)入神舞的「呼喊敘事」;以及全世界不同族群各異其趣的詠唱方式。

-----廣告,請繼續往下閱讀-----
在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去。圖/pixabay

這麼說來,器樂(instrumental music)性質特殊,跟歌曲和口語有所區分。它是一種完全脫離語言的音樂。最早的製笛師也許研究出如何創造超越語言特性的音樂。在這方面,他們或許跟其他動物找到了共通性。

動物們也有音樂和語言

昆蟲、鳥類、蛙類和其他物種的聲音也許有自己的文法和句式,卻肯定不屬於人類語言的範疇。如果器樂確實讓我們感受到超越語言或先於語言的聲音,那麼這是一種矛盾的體驗。

人類對工具的使用為時不久又獨一無二,透過這樣的活動,我們超越語言,體驗到聲音的含義與細節。我們的動物親族或許仍然這樣體驗聲音,演化成為人類之前的祖先肯定也是。器樂或許帶領我們的感官回到工具和語言出現之前的體驗。

打擊樂的出現可能也早於口語或歌曲。由於鼓的材質多半是生活中常見的皮革或木頭,不耐久存、容易腐朽,考古學上的證據因此相當稀少。已知最早的鼓只有六千年歷史,出現在中國,但人類打鼓的歷史應該久遠得多。

-----廣告,請繼續往下閱讀-----

在非洲,野生黑猩猩、倭黑猩猩和大黑猩猩都使用鼓聲做為社交信號。這些猩猩表親使用雙手、雙腳和石頭敲擊身體、地面或樹木的板根。

這意味著我們的祖先可能會擊鼓,或許用來傳達身分或領域訊息,在此同時凝聚成團結合作、節奏一致的群體。相較於其他類人猿,人類鼓聲的節拍更有規律,也更精準。有趣的是,對許多黑猩猩族群而言,用石塊敲擊樹木可說是一種儀式。

黑猩猩會選擇特定樹木,在選定的每個地點疊出石堆。牠們不但把石頭存放起來,還會將它們拋或扔向樹木,發出砰或喀嗒聲。牠們敲擊樹木時,通常一面發出洪亮的「噓喘」,一面用手腳擊打樹幹。那麼,黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。

黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。圖/pixabay

這個現象告訴我們,人類音樂的這些元素,歷史比我們的物種更悠久。

-----廣告,請繼續往下閱讀-----

最古老的緣起仍成謎

人類音樂最古老的根源究竟從什麼時間點開始,目前還是個謎,器樂與其他藝術形態之間的關係卻比較清楚。世上已知最古老的樂器,就埋葬在已知最古老的具象雕像旁,二者都來自洞穴裡人類遺跡的最底層。

它們底下的沉積層已經看不到人類的痕跡,而後,在更深處是尼安德塔人的工具。在地球上的這個位置,器樂和具象藝術同時出現,就在解剖學意義上的現代人最早抵達歐洲冰雪大地的時刻。

樂器與具象雕刻品有個共通概念,那就是物質經過三度空間的修改,可以變成活動的物件,刺激我們的感官、心靈和情感,如今我們稱之為「藝術的體驗」。笛子與雕像的並置告訴我們,在奧瑞納文化時期,人類的創意不只展現在單一活動或功能上。工匠的技藝、音樂的創新與具象派藝術彼此連結。

最早期的人類藝術也為藝術形式之間的相關性提供佐證。已知最早的繪畫是抽象的,而非具象。這些繪畫來自七萬三千年前,掩埋在南非布隆伯斯洞窟(Blombos Cave)的沉積層裡。在那個洞穴裡,有人用赭石筆在易碎的岩石上畫出交叉陰影圖案。這個圖案所在的沉積層還有其他創意作品存在,比如貝殼珠子、骨錐、矛頭和赭石鐫刻的作品。

-----廣告,請繼續往下閱讀-----
布隆伯斯洞窟的貝殼珠。圖/wikipedia

只是,現階段的紀錄顯示,德國南部洞穴立體藝術品製作工藝發展的速度,可能與使用顏料的具象藝術不一樣。笛子和小雕像似乎沒有經過刻意著色,它們所在的洞穴也沒有壁畫裝飾。在這個地區,要等到更後期的馬格達連文化(Magdalenian,大約這些笛子出現後再經過兩萬年),才有明顯以赭色顏料塗畫的岩石裝飾。

馬格達林洞穴壁畫。圖/wikipedia

歐洲另一個奧瑞納文化遺址、西班牙北部的埃爾卡斯蒂洞窟(El Castillo),發展軌跡卻是不同。洞穴裡的圓盤壁畫時間超過四萬年,在同一面牆壁上有個三萬七千年前的手掌圖案。不過,據我們目前所知,這個時期在這個地區並沒有立體藝術創作。

同樣的,蘇拉威西洞穴的具象壁畫也跟任何已知雕刻作品無關。這些差異透露的,是考古紀錄有欠完整,而不是人類藝術的發展歷程。目前看來,立體藝術作品(雕像與笛子)最早發展的時間和地點似乎與繪畫不同。

見證音樂的悠久歷史

這段悠久的歷史重塑我們對更近期藝術的體驗。望著舊石器時代的笛子和小雕像,我想到大英博物館、紐約大都會藝術博物館和羅浮宮的人潮。有時我們會排隊幾小時,只為了看一眼人類藝術與文化的重要時刻。但在德國鄉間這座小博物館裡,我們見識到藝術更深遠的根源。

-----廣告,請繼續往下閱讀-----

我張開雙臂。假設我雙手之間的距離是已知人類音樂與具象藝術存在的時間,冰河期的笛子和雕刻品的位置會在我左手指尖,跟蘇拉威西的洞穴壁畫一起。各大博物館裡的主要藝術品的位置則在我右手伸直的指尖,是過去一千年來的產物。

這絕不代表過去幾百年來的藝術創作不重要,相反的,紀錄遠古人類精湛藝術的遺址和博物館既與更近期的作品相得益彰,也為人類的藝術創作尋根溯源。藝術在與每個地區的動物和環境的關係中誕生,又藉著舊石器時代人類的高超技藝與想像力向上提升。

—本文摘自《傾聽地球之聲》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

4

3
3

文字

分享

4
3
3
運動聽音樂,讓你越動越活躍!
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・2255字 ・閱讀時間約 4 分鐘

你有過邊聽音樂邊跑步的經驗嗎?讓我們先來看一段動畫,再開始今天的主題!動畫裡的主角阿辰有個熱愛跑步的阿公,他想要挑戰路跑,於是向阿辰下戰帖,想看誰可以先跑完四圈操場。沒想到,原本落後的阿辰,戴上耳機後,竟然逆轉局勢,贏得了比賽。這究竟是什麼魔法?為什麼音樂能讓阿辰瞬間變成飛毛腿呢?

「音樂關鍵字(Unlocking Music)」EP2:奔跑吧!阿公(Go, Grandpa, Go!)。影/YouTube

日常生活中的音樂與運動

2014 年,美國音樂潮牌 Sol Republic 調查 1,000 位民眾使用耳機的習慣,有 62% 的民眾表示「一整天沒有聽音樂,比一整天沒有社交活動」更糟,另外也有 40% 的民眾表示,如果沒有搭配音樂,他們想要運動、鍛鍊身體的欲望就會大幅降低。

在臺灣,如果你曾經踏進健身房或運動中心,想必聽過從喇叭傳出來的快節奏音樂,或是看過不少人戴著耳機跑步、舉重、騎飛輪。如果你在學校或熱鬧的商圈看過街舞表演,通常也都是選用節奏明快的流行歌。可是,為什麼音樂和運動有關呢?一邊運動,一邊聽音樂,真的對我們有幫助嗎?如果有,背後的科學原理又是什麼?

聲音如何穿越耳朵、抵達大腦?

想知道為什麼音樂和運動有關,就得先瞭解聲音如何穿越耳朵、抵達大腦。

-----廣告,請繼續往下閱讀-----

從生理構造來看,我們的耳朵可分為三部分:外耳、中耳和內耳。外耳負責將接收到的聲波傳入中耳。中耳有「耳膜」和「聽小骨」,能夠增強聲波,將聲波轉換成內耳能夠解讀的訊號。內耳有「耳蝸」和「前庭系統」,分別掌管聽覺和平衡感。這兩個結構會在末端合體,成為「前庭耳蝸神經」,也就是 12 對腦神經中的第 8 對,可以將聲音訊號直接送進大腦。

聽小骨(綠色)、耳蝸(粉紅色)與前庭耳蝸神經(藍色)。圖/iStock

擅長平衡、喜歡打節拍的前庭系統

說到平衡感,那就和運動有關了!前庭系統的功能就是穩定身體,讓我們走路時不易跌倒、運動時能保持平衡,眼睛追蹤移動物體時,也不至於暈頭轉向。這些都要歸功於前庭系統裡頭的「半規管」和「耳石」,前者感知旋轉,後者感知重力與加速度。

如果我們一邊跑步一邊聽音樂,讓節奏規律的低頻重拍經由前庭系統刺激大腦,就能讓大腦誤以為是雙腳落地的低頻聲響。如此一來,大腦就會透過前庭系統發送訊號給肌肉,幫助腳步保持規律。換句話說,如果音樂節奏與步伐速度相近,跑起來就能更輕鬆;反之,如果換成節奏較慢的音樂,前庭系統就會讓我們不自覺放慢腳步,導致運動效果不佳。

研究顯示,聽音樂運動「效果十分顯著」

早在 1911 年,美國統計學家艾爾斯(Leonard Ayres)就發現,如果賽道旁有樂隊演奏,自行車選手踩踏板的速度也會隨之加快。[1] 2012 年,英國雪菲爾哈倫大學(Sheffield Hallam University)的研究進一步證明,相較於踩踏速度沒有和音樂節拍同步的選手來說,同步選手的耗氧量減少 7%,意思就是比較不容易疲累或缺氧。由此可見,音樂就像身體的節拍器,可以穩住運動節奏,減少體力耗損。[2]

-----廣告,請繼續往下閱讀-----

2017 年,印度幾所大學的醫學院教授共同研究音樂對青少年運動表現的影響。這些教授找來 50 位年齡介於 19 到 25 歲的學生,讓他們連續 10 個早晨在跑步機上運動,速度不限,累了就可以停下來。研究數據顯示,在沒有播放任何音樂時,男性的平均運動時間約為 26 分鐘,女性則是 18 分鐘;相較之下,當他們聆聽各自喜歡的音樂時,男性的平均運動時間可以達到 42 分鐘,女性則是 31 分鐘,前後有非常明顯的落差。[3]

音樂能夠顯著延長青少年的慢跑時間。圖/IJPPP

2020 年,美國桑福德大學(Samford University)的研究也顯示,只要在暖身時,聆聽喜歡的音樂,就可以提高臥推槓鈴的表現。雖然臥推速度幾乎沒有差異,如圖(a),可是臥推次數明顯增加。根據圖(b)的數據,如果聆聽不喜歡的音樂(NON-PREF),平均只能推 11.1 下,經過兩分鐘休息後,只能再推 8.0 下;但如果聆聽喜歡的音樂(PREF),平均可以推 13.5 下,經過兩分鐘休息後,也可以再推 9.4 下,可見聽音樂運動的效果確實非常顯著。[4] 

研究顯示,只要在暖身時,聆聽喜歡的音樂,就可以提高臥推槓鈴的表現。圖/JFMK

註解

  1. Sound Over Pounds: Survey Finds Two Out Of Three People Cut Their Workout Short Or Ditch It Completely Without Headphones
  2. 認識耳朵 – 歡迎光臨林口長庚耳鼻喉部
  3. Let’s Get Physical: The Psychology of Effective Workout Music
-----廣告,請繼續往下閱讀-----
所有討論 4