Loading [MathJax]/extensions/tex2jax.js

2

14
2

文字

分享

2
14
2

什麼是「可變性原則」?它如何讓 SpaceX 一飛沖天?——《造局者:思考框架的威力》

天下文化_96
・2021/10/02 ・2256字 ・閱讀時間約 4 分鐘

  • 作者/庫基耶(Kenneth Cukier)、麥爾荀伯格(Viktor Mayer-Schönberger)、德菲爾利科德(Francis de Véricourt)
  • 譯者/林俊宏

企業家伊隆.馬斯克(Elon Musk)於 2002 年創辦 SpaceX,為達成火星殖民的目標,開發一系列火箭和太空船,甚至領先世界各國航太技術,享譽全球。到底是什麼樣的思維模式,造就 SpaceX 這般豐功偉業呢?答案就藏在《造局者》這本書中,趕快來搶先閱讀吧!

「思考框架」三大原則:可變性原則

馬斯克(Elon Musk)創辦的 SpaceX,就是一家把可變性原則應用得爐火純青的企業。SpaceX 是研發可回收火箭的先驅。可回收火箭一直是航太工程師的夢想,也是科幻小說裡的常見載具。但在 1960 年代和 1970 年代,航太總署(NASA)科學家的想法是讓火箭加上機翼,如此一來,就能在返回地球之後,像飛機一樣著陸。當時所假設的限制條件是「火箭的回歸需要靠空氣動力學的升力」。這種想法也就催生了外形類似飛機的太空梭—後來更催生了懸掛式滑翔機,相關技術是由航太總署的工程師羅加洛(Francis Rogallo)於 1960 年前後發明,起初,是做為將太空艙帶回地球的方式。

然而,這些機翼巨大而沉重,空氣動力學的升力大小,又得視機翼的尺寸而定。機翼愈大,雖然升力也愈大,但在發射時,也會增加重量、體積和阻力。考量到這一切限制後,最後的太空梭系統是個有問題的折衷方案,需要有一個附加在外的巨大油箱,只能使用一次,而且太空梭主體的滑翔能力也相當有限。航太總署受限於空氣動力學升力的條件下,也就只能想像出很傳統的機翼與降落傘的設計,並相應帶來了所有缺點。

相較之下,由於各種創新突破(特別是在感測器與運算能力方面),SpaceX 的想像不再限於空氣動力學的升力。雖然也效仿航太總署,以減緩火箭的下降速度為目標,但是 SpaceX 改了方法,希望能重新點燃第一節火箭的發動機,採直立方式降落。SpaceX 的想法是:別再管空氣動力學的升力了,就靠火箭的動力吧!這件事的大膽之處在於需要重新點燃引擎,也得保留足夠的燃料,來減緩火箭下降的速度(而且燃料很重,所以不能保留太多),並且還得有控制系統,以利穩定著陸過程。

太空梭本身的實體結構十分複雜,而 SpaceX 獵鷹火箭的第一節實體結構相對簡單,卻搭載了複雜得多的控制系統。而且,也是由於科技的進步,才能夠做到如此先進的控制。

-----廣告,請繼續往下閱讀-----

祕訣在於:要瞭解哪些限制是可變的。雖然 SpaceX 也接受「火箭降回地球時必須減速」這項設定,但選擇了不同的處理方式—不是靠機翼,而是使用內建的火箭引擎。正因為 SpaceX 的工程師鬆開了其中一套可變的限制,才看到了新的可能,並研發出獵鷹系列的可回收火箭。

資料來源/SpaceX

可變性原則的優勢:幫助我們看到選項並採取行動

像 SpaceX 火箭控制系統這樣的科技革新,就可能讓過去無可改變的限制,擁有可變性(雖然科技本身也是思考框架的產物)。要選擇改變哪些限制的時候,根據可變性原則,應該要先挑出各種我們能夠影響的要素。如果希望反事實能發揮作用、讓夢想成真,該調整的並不是那些我們本來就該遵守的限制(例如:經理手頭的預算,或是主廚能運用的烹調時間),而是調整那些能透過行為或選擇而改變的限制。這樣一來,夢想成為現實的可能性也就更高。

可變性原則並不完美。對於哪些事情可變、哪些又不可變,我們可能會誤判。然而,這套原則有一個很大的優勢:能讓我們把推理的焦點,放在那些我們有能力影響、更改、或塑造的事物上,幫助我們看到選項,採取行動。像是要趕到城市另一邊開會,卻又快遲到的時候,我們只會認真考慮該搭地鐵還是計程車,而不會想像什麼很科幻的懸浮列車。對 SpaceX 來說,他們就是認真考慮該用怎樣的工程方案,以減緩下降速度。對以色列指揮官尚龍准將(Lt. Gen. Dan Shomron)來說,恩德培行動(Operation Entebbe)就是必須準備「遭遇烏干達部隊的阻撓時,該如何作戰」的方案,而不會打算在戰火正盛的時候,去說服對方棄械投誠。

我們常常認為人類的行動具備可變性,那是因為,就因果認知觀點來看,我們相信人類具有能動性,也就代表人類能控制自己的行動。同樣的,我們也相信人類的行為是會改變的,而且認為我們能夠形塑他人的行為與行動。我們的思考框架,就是會這樣關注著人們的各種行動,而這點是利而非弊。如果能注意有哪些限制條件是操縱在我們手中(也就是那些條件具備可變性),也就有助於我們找出調整起來最有利的限制。

-----廣告,請繼續往下閱讀-----

實驗中,研究人員發現了一種有趣的小麻煩。我們或許以為人類的活動有很大的彈性空間,但在做反事實思考的時候,你想像得到的行為改變,多半都還是落在多數人所接受的社會規範以內。像是開會要遲到了,但等計程車的人大排長龍,這時候,我們或許比較會想到掏出手機,改叫 Uber,而比較不會想到要直接插隊到最前面。

當然,至少在原則上,社會規範是能夠改變的,而且確實也會隨著時間慢慢改變。但在我們的反事實心理實驗室裡,那些反事實卻常常受到約束,我們常會覺得規範都是固定不變的,而且自己無力改變。原因可能出自人類的社交本質:為了合群,就會讓我們不去想像那些會讓自己遭到排斥的行為。於是,我們還是乖乖排隊等計程車。

——本文摘自《 造局者:思考框架的威力 》,2021 年 7 月,天下文化

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
太空夢成真!自費就能上太空?SpaceX 與賈里德如何推動載人航太新里程碑
PanSci_96
・2024/11/21 ・2375字 ・閱讀時間約 4 分鐘

北極星黎明:開創商業太空漫步的新紀元

2024 年 9 月 10 日,載人航太任務迎來了歷史性的突破。由美國富豪賈里德·艾薩克曼率領的四名太空人,乘坐 SpaceX 的獵鷹九號(Falcon 9)火箭和龍飛船(Crew Dragon),開始了為期五天的「北極星黎明 Polaris Dawn」任務。這次任務實現了人類首次商業太空漫步,並打破了過去五十年人類距離地球最遠的紀錄。這也是美國四十多年來首次推出的新設計太空衣,進行了「人體測試」。

這次任務的成果不僅僅令人振奮,還為未來的商業航太業開啟了新的篇章。為了解這次突破的意義,我們先一起來體驗「北極星黎明」任務的精彩旅程。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

這位賈里德是何許人也?

賈里德·艾薩克曼,現年 4 1歲,是一位白手起家的美國富豪,擁有零售支付公司的成功經歷。他還是一名充滿冒險精神的飛行家,駕駛輕型飛機創下環球飛行的紀錄,並且會操縱戰鬥機與進行特技飛行。他甚至創辦了「私人空軍」公司德拉肯國際,為美軍訓練飛行員。

賈里德對飛行的熱愛讓他不斷追求新的高度,最終使他與 SpaceX 合作,共同邁向更遙遠的天空。2021 年,他啟動了「靈感四號 Inspiration 4」任務,選擇了三名來自不同背景的一般人,與他一同踏上三天的太空旅程。這次任務向世界展示,普通人也有機會踏上太空,而不僅僅是經過嚴苛訓練的專業太空人。

-----廣告,請繼續往下閱讀-----

然而,賈里德並不滿足於此。他希望飛得更高、更遠,甚至挑戰從太空船內走向船外,完成首次商業太空漫步。這便是「北極星黎明」任務的起源。

太空漫步的挑戰

太空漫步並非簡單地穿上太空衣、打開艙門便能完成。以國際太空站為例,太空人在漫步之前需要進入氣閘艙(Airlock),一個介於太空站內部和太空之間的小房間。在氣閘艙中,太空人需要進行數小時的「預呼吸(Pre Breath)」過程,以降低大氣壓力,適應太空衣中的低壓環境,並避免潛水時常見的減壓病風險。

然而,SpaceX 的龍飛船並未設計氣閘艙,這意味著要讓太空人進行漫步,就必須將整個太空艙降壓至真空狀態,再在太空漫步結束後重新加壓。因此,團隊對龍飛船進行了大幅改造,增強了生命維持系統,並安裝了更多氮氣與氧氣槽。

此外,SpaceX 原先設計的太空衣是艙內使用的(IVA Suit),僅用於緊急情況下保護太空人,並不適合太空漫步。為了這次任務,SpaceX 不得不設計一款全新的艙外太空衣(EVA Suit),這是美國自四十年前以來首次設計新型艙外太空衣。

-----廣告,請繼續往下閱讀-----

北極星黎明任務的突破

2024 年 9 月,SpaceX 成功發射「北極星黎明」任務,這是首次由私人機構執行的太空行走任務,開創了商業太空探索的新紀元。 圖/envato

在完成了艱鉅的準備工作後,「北極星黎明」任務終於在 2024 年 9 月 10 日順利升空。這五天的旅程充滿挑戰與創舉,為商業航太寫下了新的篇章。

任務的前兩天,重點是進入 1400 公里高的軌道,這是自 1972 年阿波羅 17 號以來人類距離地球最遠的記錄。此外,兩名任務專家莎拉·吉利斯(Sarah Gillis)和安娜·梅農(Anna Menon)也成為飛得最高的女性。

在完成軌道調整後,第三天的重頭戲——商業太空漫步正式開始。龍飛船內部的氣體被排空後,賈里德和莎拉輪流將身體探出艙外,進行了一系列新太空衣的測試,而其餘兩名組員則留在艙內監控系統。這次太空漫步雖然並未像電影中那樣「漫步」在太空,但其意義非凡,因為這是由私人資金支持的商業艙外活動。

科學研究與未來展望

除了太空漫步之外,任務組員還進行了多項科學實驗和技術測試,包括微重力對人體各器官的影響研究,這些研究對於人類未來長時間在太空生活至關重要。此外,團隊還測試了星鏈(Starlink)雷射通訊技術,以提高太空中數據傳輸的效率。

-----廣告,請繼續往下閱讀-----

在任務期間,任務專家莎拉·吉利斯還在太空中用小提琴演奏了《雷伊主題曲》,並通過星鏈技術將影片傳送回地球,與全球音樂家合作完成了一場跨越時空的演出。

任務的最後一天,龍飛船安全返回地球,成功在墨西哥灣降落,為這次史無前例的太空任務畫上了圓滿的句號。

北極星黎明的意義

商業航太突破在即,未來實現太空旅行的可能或許離我們越來越近。圖/envato

對於熟悉太空史的朋友來說,這次的太空漫步似乎並不如 1960 年代的雙子星任務那樣驚險。然而,真正的突破在於「商業」二字。這次任務由賈里德自掏腰包資助,展示了商業公司在航太探索中的潛力,就像 SpaceX 在過去二十年所取得的成就。

任務中進行的大量技術測試和科學研究,證明了這不僅僅是富豪的太空旅遊,而是一次充滿挑戰的科學與技術驗證任務。這些經驗和技術將成為未來挑戰月球與火星的重要基石。

-----廣告,請繼續往下閱讀-----

「北極星黎明」任務雖然已經結束,但賈里德的太空夢還在繼續。這只是「北極星計畫」的第一步,未來還有至少兩次任務正在籌備中,其中第三次任務將搭乘 SpaceX 的星艦(Starship),進行首次載人飛行。

隨著技術的進步和更多私人資金的投入,還可以期待人類接下來在商業航太領域能取得更多突破。在未來,要來趟真正的太空之旅,看來除了熱愛科學,還需要努力賺錢了。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
賽博格時代來臨?Neuralink 的腦機介面揭密
PanSci_96
・2024/11/09 ・3060字 ・閱讀時間約 6 分鐘

2023 年 11 月 24 日,馬斯克(Elon Musk)創辦的 Neuralink 公司在官方推特上發布了一則耐人尋味的影片,標題為「Please join us for show and tell」(請加入我們的展示與分享)。這預告了他們將於 11 月 30 日美國時間晚間六點(台灣時間 12 月 1 日上午十點)舉行一場備受矚目的發表會。

回顧過去,Neuralink 曾展示過令人驚艷的技術突破,例如監測豬的腦波,以及讓猴子裝上他們開發的 N1 晶片,用腦控玩經典遊戲《乒乓》(Pong)。這些成果已經讓全球為之震撼。事隔 18 個月,這次的發表會是否會帶給我們更多驚喜?是否能看到人類親自裝上 N1 晶片,直接用大腦來「展示與分享」呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

遺憾的是,這一刻還未到來。但馬斯克在開場時就揭露了一個令全場歡呼的消息:在這段時間內,他們持續進行了更多猴子的植入實驗,甚至研發了假大腦模擬器進行離線測試。在確保一切安全和動物福祉的前提下,他們已完成所有備查文件。順利的話,將於六個月內獲得美國食品藥品監督管理局(FDA)的核准,進入人體實驗階段。他本人也表示,若情況允許,他不排斥成為第一個植入 N1 晶片的人。

無限猴子定理與腦機介面

提到猴子打字,不免讓人想到數學和哲學上的「無限猴子定理」。這個定理由法國數學家埃米爾·博萊爾(Émile Borel)於1913年在一本討論機率的書中提出。他假想:如果有無限多隻猴子和無限多次的打字機會,最終有可能打出莎士比亞的《哈姆雷特》。機率雖然極低,但並非零。

-----廣告,請繼續往下閱讀-----

這個定理也被簡化為:即使只有一隻猴子,只要擁有無限次的打字嘗試,也可能產生任何文章,儘管牠完全不知道自己在打什麼。這與這次Neuralink發表會上的猴子展示,有著異曲同工之妙。

然而,馬斯克開發腦機介面的目的,並不是讓我們與猴子溝通。在發表會上,他再次強調了Neuralink的使命:打造一個「高頻寬、泛用型的人機介面」。簡單而言,就是加速我們與智慧裝置的互動方式。

馬斯克的願景:與 AI 共存

現今,AI 技術日新月異,能夠生成精美的圖片、回答各種問題,甚至編寫程式,而且進步速度只會越來越快。馬斯克強調,如果人類希望在未來的物種競爭中與 AI 並駕齊驅,最好的策略就是「打不贏,就加入它們」。

目前,人類之所以在進步速度上遠遜於 AI,他認為主要原因在於人類接收和輸出數位資訊的速度有限。我們最快的方式是閱讀、打字、觸控或語音輸入,但與 AI 透過聯網搜尋數位資訊僅需毫秒相比,我們簡直像是石器時代的原始人。

-----廣告,請繼續往下閱讀-----

因此,他主張透過腦機介面的植入,我們將能以媲美 AI 的速度與電腦互動、聯網,甚至與 AI 協作、駕馭它們。試想,當你能用腦控操作手機和智慧裝置時,還會想用手指滑動輸入,鬧出一堆打錯字的笑話嗎?擁有這種超能力的你,還需要擔心 AI 搶走你的工作嗎?

我們與賽博格的距離

然而,想到要將晶片植入大腦,難免讓人聯想到各種賽博龐克作品中的可怕後果。例如,《Cyberpunk 2077:邊緣行者》中的「賽博精神病」、或是《刀劍神域》中可能燒毀大腦的完全潛行裝置。將自己改造成半人半機械的賽博格(Cyborg),著實令人卻步。

但馬斯克在發表會上指出,其實我們早已是廣義上的賽博格。否則,為何我們每天早上起床第一件事就是滑手機?為何不時低頭看智慧手錶?出門沒帶手機,是否比沒帶錢更讓你焦慮?我們已經如此習慣隨時聯網和人機互動,Neuralink 所做的,不過是提升這種互動的效率。

關於植入大腦的恐懼,Neuralink 以影片中展示的猴子為例。在他們使用高科技機器人進行手術植入後,根本無法從外觀看出牠們有任何植入物。發表會上的工程師甚至半開玩笑地說:「就算我有裝,你也不知道,我的腦後完全沒有痕跡。」

-----廣告,請繼續往下閱讀-----

Neuralink 的真正突破:規模化與產品化

人類對腦機介面研究其實已有百年歷史。 圖/envato

其實,腦機介面的想法和研究早已不是新鮮事。早在將近一百年前(1924年),德國醫生 Hans Berger 就首次從人類頭皮上記錄到腦發出的微弱電磁波(Electroencephalography, EEG),並開始發展非侵入性的電極腦波偵測技術。197 3年,UCLA 的 Jacques Vidal 團隊就已經提出「腦機介面」的概念。而 Neuralink 這種侵入式腦電極也非先行者。早在 1990 年代,美國猶他大學的Richard Normann 教授開發了多電極陣列,在猴子腦中植入 100 個電極,嘗試簡單任務。2002年,實驗猴就可腦控滑鼠,2008年甚至能遙控遠方的機械手臂餵食自己,控制「第三隻手」,彷彿蜘蛛人的反派「八爪博士」。

即使是相對不精準的非侵入式腦波偵測技術,只要幾百個電極,就能在人類身上實現控制機械義手的可能性。2018 年,已發展到能讓人腦控打字、玩遊戲,基本上與 Neuralink 透過 N1 植入物讓猴子能做的事情相似。

那麼,這次發表會的看點在哪裡?其實,馬斯克帶著大批工程師報告,真正要強調的重點是「規模化和產品化」。這正是這場發表會的核心,也是馬斯克向來為人所知的魔法:「讓夢想成真」的關鍵部分。畢竟,好點子並不稀奇,最重要的是執行力。不論是 SpaceX、Tesla,或是前陣子轟動一時的機器人 Optimus,他一貫採用「先求有再求好」的思維,不做最強的原型機,而是先拼湊所有技術,做一個最有可能讓消費市場買單的產品。畢竟,兵貴神速,尤其在商用市場上。

關於 N1 晶片,馬斯克形容得很輕巧,就像是幫你的大腦裝上 Apple Watch 一樣。但智慧裝置成癮的你我,應該此時會浮現相同的疑問:手錶和手機的電池效能會越來越低,科技產品每年都會更新軟硬體,當這些「身外之物」來到產品生命週期末尾時,我們總能輕易汰換。但當這個 3C 產品是放在腦膜底下,如何確保它不僅不會故障,還能好好充電,甚至可升級呢?

-----廣告,請繼續往下閱讀-----
N1 晶片有辦法像 Apple Watch 等「身外之物」一樣,隨時被汰換嗎?圖/envato

Neuralink 這次可是有備而來。首先是穩定性的部分,除了上次發表會看到能腦控《乓》遊戲的猴子佩吉外,這次還展示了其他五隻猴子分別進行不同的腦控遊戲。馬斯克特別強調,牠們都很享受這些實驗,包括這次展示腦控打字的 Sake。透過重複性的實驗,穩定性已獲得一定的保證。

續航力方面,團隊已經改良電池效率,並在猴子身上實驗了無線充電的可行性,確保一整天使用無虞。最後,也是最重要的「可升級性」。畢竟,目前的 N1 就如同 iPhone 一代,當技術演進到 iPhone 14 時,應該沒有人想繼續用舊款。因此,發表會上工程師們展示了 N1 晶片的手術過程有多簡易,完全使用手術機器人,輕鬆地在 15 分鐘內自動植入 64 個電極,再安全地把頭蓋骨和皮膚縫合回來。後續無論是軟硬體升級,只需要到他們正在建置的腦機介面診所就可進行。

目前,N1 晶片的製造已在奧斯汀開始產線準備進行量產。只要 FDA 核准,人體試驗成功的話,Neuralink 就有機會成為第一個達成商用化的腦機介面服務商。

競爭對手與未來展望

然而,Neuralink 只是「有機會」成為第一個達成商用的公司。這兩年,不止一家公司追上,甚至彎道超車,推出比 Neuralink 更接近完成品的產品。在這裡先賣個關子,預告下集我們將討論馬斯克的勁敵,以及可能導致 Neuralink 被指控虐待動物的爭議。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----