0

32
4

文字

分享

0
32
4

《刀劍神域》元年?——從實現《刀劍神域》來看現今元宇宙技術

天竺鼠
・2022/12/31 ・6047字 ・閱讀時間約 12 分鐘

  • 文/吳政佳|國立中央大學通訊研究所碩士班

《刀劍神域》小說在 2002 年開始連載於網路,而「刀劍神域」也是故事中網路遊戲的名稱。這部小說在 2012 年製作成動畫,也成為許多人踏入動漫領域的第一步。以下是《刀劍神域》中一段故事設定:

「 2022 年 5 月,大廠牌電子機械製造商 ARGUS 發佈了能夠實現虛擬實境的機器 NerveGear,人們可以通過 NerveGear 進行完全潛行以進入虛擬世界。不久,全球首款虛擬實境 MMORPG《刀劍神域》,在經過大約一千人參加的封測後正式發佈,首次共限量發售一萬份。」[2]

在故事中 2022 年 MMORPG[註1]《刀劍神域》「Sword Art Online」遊戲正式發售,而今年正好就是 2022 年。或許你也會像我一樣好奇,現實與故事裡那令人嚮往的虛擬世界距離還有多遠? 

SAO——艾恩葛朗特。圖/參考資料 25

什麼是「元宇宙」?

如果你了解《刀劍神域》,也看過其他科幻電影,比如《駭客任務》、《一級玩家》,那你肯定不會對「元宇宙」這概念陌生。元宇宙簡單來講,是一個大家共享的 3D 虛擬世界,它可以將現實世界有的甚至是沒有的東西,在虛擬宇宙中建構出來。未來你甚至可以在裡面上班、跟朋友聚會、參加演唱會,所有你想的到經濟活動[註2]都可以裡面實現。

-----廣告,請繼續往下閱讀-----

(一)元宇宙熱潮和起源

2021 年 10 月 28 日祖克柏親自宣告 Facebook 將改名為 Meta,他們不再是一家社群媒體公司而是「元宇宙」公司。加上自從 2020 年的疫情爆發,人們對於虛擬互動平台需求增加,網路上開始興起了大量對於元宇宙的討論。[4]

元宇宙「Metaverse」一詞來自於 1992 年出版的小說《潰雪》,作者在裡面描述了一個平行於現實世界的網路世界名稱「Metaverse」,有趣的是人們在裡面的網路分身叫作「阿凡達」(Avatar)。而 Metaverse 一詞可以看出,它是從宇宙(Universe)演變過來的,Meta 有「之後、超越」的意思,所以翻譯也可稱之為「後設宇宙」[5]

(二)VR、AR比較

-----廣告,請繼續往下閱讀-----

在元宇宙提出之前,提到虛擬世界大家可能會聽過 VR 或者 AR,那他們分別是什麼? 

VR 虛擬實境(Virtual Reality),是創造出一個虛擬的 3D 環境,並透過各種技術讓使用者身歷其境般地體驗。不侷限視覺、聽覺,未來也希望加入觸覺、溫度覺、嗅覺和虛擬物件的互動回饋等感官體驗。[6]這描述就很像元宇宙,後文將介紹它們的差異。

AR 擴增實境(Augmented Reality),定義是在現實世界的基礎上疊加資訊或內容[6]。簡單講就是以真實世界為背景,在上面添加虛擬物件,舉例如前幾年爆紅的 Pokémon GO 遊戲就是使用 AR 技術。

(三)元宇宙和 VR 一樣嗎?

-----廣告,請繼續往下閱讀-----

元宇宙和 VR 看起來都是建立一個 3D 的虛擬環境,盡可能還原人們在現實世界中的感官體驗。不過如果單純 3D 建模世界,沒有與現實世界有更多的連結,去賦予虛擬事物價值,它無法真的稱之為「世界」。

在刀劍神域故事中,茅場晶彥說過的名言:「這雖然是遊戲,但可不是鬧著玩的。[2]」因為他訂下了規則,在遊戲中死去現實中也會喪失生命,所以遊戲就不再是遊戲,之後才會有精彩的故事。

元宇宙是一個相對複雜的概念想像,在之後陸續加入的虛擬貨幣 NFT[註3]等概念,使元宇宙裡的虛擬物件確定了價值。所以現在你可以在虛擬世界中購買土地,在虛擬世界裡工作,獲得現實世界中的薪水,如果日後普及,是不是想想就很科幻呢?

實現《刀劍神域》的「完全潛行」

在介紹元宇宙後,考慮如何實現《刀劍神域》,最大問題就是如何讓人與虛擬世界之間進行互動的裝置。我們需要先來看看故事中對於連接虛擬世界「完全潛行」一詞的技術描述。以下是以故事中初代的頭戴裝置 NERvGear 為對象。

-----廣告,請繼續往下閱讀-----
頭戴裝置——NERvGear。圖/參考資料 26

「它的內側還藏了無數的元件,而頭盔則藉由這些元件所產生的電場,與使用者的腦部直接連結,使用者不需要使用自己實際的眼睛與耳朵,就能因為機器直接給予腦的視覺質區與聽覺質區情報,而讓使用者有聽到與看到的感覺。其實除了聽覺與視覺外,觸覺、味覺與嗅覺,也就是所謂的五感,全都能由 NERvGear 讀取出來。」[8]

「因為(完全潛行)的使用者不只是接收假想的五感情報而已——連由腦部向自己身體所發出的命令也會遭到阻斷與回收」[8]

以上是書中對於 NERvGear 的設定,可以看出需要以下關鍵科技。

(一)非侵入式的腦機介面

-----廣告,請繼續往下閱讀-----

從故事中可以看到,主角們在連接時,只需要戴上頭盔,很明顯這是個非侵入式的腦機介面[註4]。它的原理是透過,大腦裡的神經細胞活動會產生電位差,一個神經細胞所產生的電流很小,但一群神經細胞同步活化,就能匯集成足夠大的電流產生電磁場,一層層穿過組織來到頭皮,這樣我們就能將量測到腦波訊號繪製成腦電圖(Electroencephalography, EEG)。

不過由於腦內活動非常複雜,彼此區塊間負責的功能也有所不同,大腦裡約有 860 億個神經細胞[10],造成的電訊號夾雜在一起,大大增加分析的難度。加上從頭皮表面量測腦波,會受到皮膚、腦蓋骨、腦組織液的干擾。因此而有侵入式腦機介面,侵入式會穿過頭蓋骨將電極放在大腦皮層上。因為要動手術,所以不為大眾接受, 但這種方式確實能有效降低雜訊。

現在在設計給使用者時,盡量會以非侵入式的方式,但其相對量測準確度相差很多。現在技術能有效量測、判斷的腦波訊號,是比如手臂上舉、眨眼皮等特定或大型動作,及最早發現的睡眠時腦波的頻率變化。所以想要透過頭戴裝置就在虛擬世界暢遊,仍有很大的難度。

(二)感覺訊號與動作訊號

-----廣告,請繼續往下閱讀-----

已知人類是透過五官、皮膚等器官去感受外界,但刀劍神域的完全潛行,是透過訊號直接刺激神經或大腦,讓人們如同進入虛擬世界。這裡列舉最基本的視覺、聽覺,這也是現今多媒體主要傳播方式。還有為了使沉浸體驗更好,我們得要試著解決攔截動作訊號的問題。

  • 視覺技術

早在 70 年前,就發現以電流刺激大腦視覺皮層,會感知到閃光或者說光幻視[註5][11]。2020 年《科學》(Science)期刊上有發表了採用光幻視的技術[12],利用電流刺激在大腦中產生一個個小光斑,光斑組成簡單的圖像,而實驗結果成功讓猴子「看到」並分辨出英文字母、線條和移動的小點等這些圖案。這如同我們螢幕上顯示的畫面,也是一個個小到肉眼觀察不到的光點(像素)組合而成,但即便如此,這項技術也無法直接讓我們大腦看到如同眼球接收般細緻的畫面。

  • 聽覺技術

人工電子耳可以說是現今最成熟的醫療輔具之一,現在助聽器或人工電子耳已經非常常見。助聽器主要只是將聲音放大傳入耳朵,而人工電子耳則是如果內耳絨毛細胞受損嚴重,無法接收聲音,它則可以直接刺激聽覺神經,產生聽覺[14]。不過這仍與故事設定不同,非直接刺激大腦皮層。

以上看來感覺訊號,現今都受限於大腦電刺激技術,不過一直仍有無數人前仆後繼去研究,還是很期待有一日達成突破。

-----廣告,請繼續往下閱讀-----

(三)潛行中阻止身體動作

完全潛行還有一個重點,就是在虛擬世界中活動,不會影響到外界的身體,也就是我們控制的運動只會在我們腦中進行。由於攔截腦波的研究,我沒有查到,所以這邊提出假設方法。排除使用藥劑去使人無法動作,若利用身體機制可以嘗試俗稱「鬼壓床」的「睡眠癱瘓症」。

觸發原因是因為睡眠周期中的快速動眼期(REM),人們在這期間容易做夢甚至夢遊,因此大腦會發出命令分泌激素,使肌肉癱瘓避免危險,若這時清醒,就會產生大腦已經有知覺了,但全身仍無法動作的情況[13]。因此如果能夠主動誘發以上情況,或許就能達成完全潛行想像中,現實的人們如同深睡,在虛擬世界展開冒險。不過以上假設需要實驗求證可行性。

元宇宙概念相關的遊戲

回過頭來看元宇宙,除了刀劍神域等科幻作品與它的概念有關,遊戲作為人們對於幻想實踐嘗試的方法之一,隨著元宇宙的熱潮,也伴隨之相關的遊戲誕生。前陣子,因為可以在虛擬遊戲中買地交易,甚至賺取收入爆紅的 The Sandbox、Decentraland 等,前者已經有如愛迪達等大品牌進入,後者則如名人林俊傑在裡面持有 3 塊地,但兩者同樣價格不斐,以今年 5 月底以太幣的匯率,價值都在 20 萬台幣以上[15]。除了以上新遊戲,不少經典遊戲也能幫助我們審視未來元宇宙的發展。

(一)Minecraft

Minecraft 幾乎人人都知、人人都玩過,發行已超過 10 年,但人氣依然不減,每日仍有大量玩家活躍在線。儘管畫面簡單,但卻能使玩家有良好的沉浸式體驗,Minecraft 也逐漸成為許多玩家們的社交場所。

下面列出兩個得元宇宙借鏡的優點。

Minecraft 遊戲畫面。圖/參考資料 27
  • 去中心化[16]

每個玩家在裡面擁有自己的世界,它就像是屬於你的元宇宙,你可以邀請朋友造訪,一起經營起一個龐大的世界。相比現在各大科技公司爭相所提出的元宇宙未來,營運仍控制在企業手上,Minecraft 或許更加符合理想中屬於玩家、使用者的專屬世界。

  • 高自由度[16]

這也是 Minecraft 最迷人的地方,它需要你發揮創意改造,官方不限制你開發新的遊戲模組[註6](Mod),這使的遊戲自由度大大提升,使得 Minecraft 已經不是一個遊戲,而是一個眾人合力組成的遊戲平台。

(二)Roblox

Roblox 於 2005 年問世,在台灣的玩家與討論熱度較少,但在美國尤其是疫情之後,統計超過一半 16 歲以下兒童青少年在玩該遊戲[17]。作為一款大型多人線上遊戲平台,由樂高積木組成世界,玩家們透過開發工具,設計出專屬於你的遊戲,上傳到遊戲平台上[18],現在上面已有超過 4000 萬種遊戲,不少人因此一夕爆紅,賺到大筆收入[19]

Roblox 被稱作「元宇宙第一股」,除了一上市估值破 450 億美元外,大家看好它實現創作者獲得利潤,由玩家們去參與定義元宇宙該要有的樣子。就像是 Youtube 一樣,所有人都有可能是創作者。

Roblox 。圖/參考資料 28

(三)Second Life

第二人生發行於 2003 年,在 2006、2007年獲得媒體關注[20]。這款遊戲的存在似乎就是想訴說,元宇宙不是一個新東西,而它就是先行者。開發商當初就是想要實現《潰雪》裡面所描述的世界,這是一款 3D 仿真實社會遊戲,玩家在裡面對話交流、開店經營,同樣也可以換成真實貨幣。

當年這款遊戲也掀起熱烈討論,大大小小企業、團體入住。在 2011 年 IBM 在裡面購買了 12 座島嶼,作為員工訓練、線上開會。哈佛大學在遊戲裡開過課,政治人物在裡面接受記者採訪[21]。但從現在回頭看,它也漸漸淹沒在時光長河裡,直到元宇宙熱潮再起,它才重新回到大眾面前,不知它將會見證成功還是歷史的重演。

《Second Life》遊戲畫面。圖/參考資料 29

結語

雖然目前的技術還無法實現像《刀劍神域》等科幻作品中的場景,不過隨著技術日新月異,只要還有人研究,那麼總有可能成真的一天。

如今元宇宙相關技術發展,除了很多先行應用在遊戲產品上,還有祖克伯的 Meta 公司,計畫改變未來社群媒體的型態,讓人們在 3D 虛擬世界中社交、開會等等,如果普及化就搞不好會像當年 Facebook 的誕生一樣,對我們的生活帶來巨大的改變。

前方看來還有很多挑戰,是否現在的使用者產品可以讓大眾接受,成為下個革命性產品,有許多質疑。不過作者私心希望這個熱潮不會那麼早消退,畢竟我還期待有一天可以在《刀劍神域》虛擬世界中冒險呢!

註解

[註 1]大型多人線上角色扮演遊戲(MMORPG)為電子遊戲的一種,是電子角色扮演遊戲按電子遊戲人數分類分別出來的一種網路遊戲。[23]

[註 2]經濟活動主要是以勞力等「生產資料」換取商品和服務,貨幣只是交易的媒介。[24]

[註 3]非同質化代幣(Non-Fungible Token,簡稱:NFT),是一種被稱為區塊鏈數位帳本上的資料單位,每個代幣可以代表一個獨特的數位資料,作為虛擬商品所有權的電子認證或憑證。[25]

[註 4]腦機介面(Brain-computer interface, BCI),是指大腦與電腦的連接口裝置。[9]

[註 5]光幻視(phosphene)是在沒有光實際上進入眼睛的情況下看到光的現象。[26]

[註 6]遊戲模組,「Mod」(全寫「Modification」),多指遊戲廠商或者熱心玩家對於原版電子遊戲在功能方面的修改。[27]

參考資料

  1. 刀劍神域 , 維基百科
  2. 不可不知的元宇宙熱潮,IEK產業情報網
  3. 元宇宙, 維基百科
  4. VR、AR、MR 介紹:AR 擴增實境、VR 虛擬實境,有何差異? , AR PLAZA
  5. Link Start- 以電機工程與神經科學的角度研究《刀劍神域》中「完全潛行」技術之可行性,班尼.史克斯, 巴哈姆特
  6. 腦機介面 (Brain-Computer Interface) 專題 (上) ,The Investigator Taiwan
  7. 不可思議的大腦-《知識大圖解》,PanSci 泛科學
  8. Beauchamp, M. S., & Yoshor, D. (2020). Stimulating the brain to restore vision. Science, 370(6521), 1168-1169.
  9. 1Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R. (2020). Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science, 370(6521), 1191-1196.
  10. 《睡眠麻痺症》不用怕 症狀很快就消散,亞洲大學附屬醫院
  11. 人工電子耳和助聽器有什麼不同?,衛生福利部國民健康署網站
  12. 在元宇宙裡買塊地?區塊鏈虛擬土地購買全攻略【2022 最新版】,INSIDE
  13. The Metaverse Is Already Here — It’s Minecraft | by Clive Thompson | ,Medium Debugger
  14. Over half of US kids are playing Roblox, and it’s about to host Fortnite-esque virtual parties too ,The Verge
  15. 你從沒聽過的電玩 讓這些青少年成了千萬富翁,天下雜誌
  16. Roblox如何成為元宇宙第一股?創作者與平台互利共生,背後模式是什麼?,數位時代
  17. 第二人生 (網際網路) ,維基百科
  18. 可創業賺錢的線上遊戲-「第二人生」,天下雜誌
  19. 第二人生兔子集體長眠事件,香港01
  20. 大型多人線上角色扮演遊戲,維基百科
  21. 經濟活動,香港教育城
  22. NFT,維基百科
  23. 光幻視,維基百科
  24. 遊戲模組,維基百科
  25. SAO——艾恩葛朗特,(2012) (imdb.com)
  26. 頭戴裝置NERvGear ,(2012) (imdb.com)
  27. Minecraft遊戲畫面 ,(2009) (imdb.com)
  28. Roblox Facebook封面2017年
  29. Second life Facebook 2014年官方相簿
-----廣告,請繼續往下閱讀-----
文章難易度
天竺鼠
1 篇文章 ・ 0 位粉絲

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
賽博格時代來臨?Neuralink 的腦機介面揭密
PanSci_96
・2024/11/09 ・3060字 ・閱讀時間約 6 分鐘

2023 年 11 月 24 日,馬斯克(Elon Musk)創辦的 Neuralink 公司在官方推特上發布了一則耐人尋味的影片,標題為「Please join us for show and tell」(請加入我們的展示與分享)。這預告了他們將於 11 月 30 日美國時間晚間六點(台灣時間 12 月 1 日上午十點)舉行一場備受矚目的發表會。

回顧過去,Neuralink 曾展示過令人驚艷的技術突破,例如監測豬的腦波,以及讓猴子裝上他們開發的 N1 晶片,用腦控玩經典遊戲《乒乓》(Pong)。這些成果已經讓全球為之震撼。事隔 18 個月,這次的發表會是否會帶給我們更多驚喜?是否能看到人類親自裝上 N1 晶片,直接用大腦來「展示與分享」呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

遺憾的是,這一刻還未到來。但馬斯克在開場時就揭露了一個令全場歡呼的消息:在這段時間內,他們持續進行了更多猴子的植入實驗,甚至研發了假大腦模擬器進行離線測試。在確保一切安全和動物福祉的前提下,他們已完成所有備查文件。順利的話,將於六個月內獲得美國食品藥品監督管理局(FDA)的核准,進入人體實驗階段。他本人也表示,若情況允許,他不排斥成為第一個植入 N1 晶片的人。

無限猴子定理與腦機介面

提到猴子打字,不免讓人想到數學和哲學上的「無限猴子定理」。這個定理由法國數學家埃米爾·博萊爾(Émile Borel)於1913年在一本討論機率的書中提出。他假想:如果有無限多隻猴子和無限多次的打字機會,最終有可能打出莎士比亞的《哈姆雷特》。機率雖然極低,但並非零。

-----廣告,請繼續往下閱讀-----

這個定理也被簡化為:即使只有一隻猴子,只要擁有無限次的打字嘗試,也可能產生任何文章,儘管牠完全不知道自己在打什麼。這與這次Neuralink發表會上的猴子展示,有著異曲同工之妙。

然而,馬斯克開發腦機介面的目的,並不是讓我們與猴子溝通。在發表會上,他再次強調了Neuralink的使命:打造一個「高頻寬、泛用型的人機介面」。簡單而言,就是加速我們與智慧裝置的互動方式。

馬斯克的願景:與 AI 共存

現今,AI 技術日新月異,能夠生成精美的圖片、回答各種問題,甚至編寫程式,而且進步速度只會越來越快。馬斯克強調,如果人類希望在未來的物種競爭中與 AI 並駕齊驅,最好的策略就是「打不贏,就加入它們」。

目前,人類之所以在進步速度上遠遜於 AI,他認為主要原因在於人類接收和輸出數位資訊的速度有限。我們最快的方式是閱讀、打字、觸控或語音輸入,但與 AI 透過聯網搜尋數位資訊僅需毫秒相比,我們簡直像是石器時代的原始人。

-----廣告,請繼續往下閱讀-----

因此,他主張透過腦機介面的植入,我們將能以媲美 AI 的速度與電腦互動、聯網,甚至與 AI 協作、駕馭它們。試想,當你能用腦控操作手機和智慧裝置時,還會想用手指滑動輸入,鬧出一堆打錯字的笑話嗎?擁有這種超能力的你,還需要擔心 AI 搶走你的工作嗎?

我們與賽博格的距離

然而,想到要將晶片植入大腦,難免讓人聯想到各種賽博龐克作品中的可怕後果。例如,《Cyberpunk 2077:邊緣行者》中的「賽博精神病」、或是《刀劍神域》中可能燒毀大腦的完全潛行裝置。將自己改造成半人半機械的賽博格(Cyborg),著實令人卻步。

但馬斯克在發表會上指出,其實我們早已是廣義上的賽博格。否則,為何我們每天早上起床第一件事就是滑手機?為何不時低頭看智慧手錶?出門沒帶手機,是否比沒帶錢更讓你焦慮?我們已經如此習慣隨時聯網和人機互動,Neuralink 所做的,不過是提升這種互動的效率。

關於植入大腦的恐懼,Neuralink 以影片中展示的猴子為例。在他們使用高科技機器人進行手術植入後,根本無法從外觀看出牠們有任何植入物。發表會上的工程師甚至半開玩笑地說:「就算我有裝,你也不知道,我的腦後完全沒有痕跡。」

-----廣告,請繼續往下閱讀-----

Neuralink 的真正突破:規模化與產品化

人類對腦機介面研究其實已有百年歷史。 圖/envato

其實,腦機介面的想法和研究早已不是新鮮事。早在將近一百年前(1924年),德國醫生 Hans Berger 就首次從人類頭皮上記錄到腦發出的微弱電磁波(Electroencephalography, EEG),並開始發展非侵入性的電極腦波偵測技術。197 3年,UCLA 的 Jacques Vidal 團隊就已經提出「腦機介面」的概念。而 Neuralink 這種侵入式腦電極也非先行者。早在 1990 年代,美國猶他大學的Richard Normann 教授開發了多電極陣列,在猴子腦中植入 100 個電極,嘗試簡單任務。2002年,實驗猴就可腦控滑鼠,2008年甚至能遙控遠方的機械手臂餵食自己,控制「第三隻手」,彷彿蜘蛛人的反派「八爪博士」。

即使是相對不精準的非侵入式腦波偵測技術,只要幾百個電極,就能在人類身上實現控制機械義手的可能性。2018 年,已發展到能讓人腦控打字、玩遊戲,基本上與 Neuralink 透過 N1 植入物讓猴子能做的事情相似。

那麼,這次發表會的看點在哪裡?其實,馬斯克帶著大批工程師報告,真正要強調的重點是「規模化和產品化」。這正是這場發表會的核心,也是馬斯克向來為人所知的魔法:「讓夢想成真」的關鍵部分。畢竟,好點子並不稀奇,最重要的是執行力。不論是 SpaceX、Tesla,或是前陣子轟動一時的機器人 Optimus,他一貫採用「先求有再求好」的思維,不做最強的原型機,而是先拼湊所有技術,做一個最有可能讓消費市場買單的產品。畢竟,兵貴神速,尤其在商用市場上。

關於 N1 晶片,馬斯克形容得很輕巧,就像是幫你的大腦裝上 Apple Watch 一樣。但智慧裝置成癮的你我,應該此時會浮現相同的疑問:手錶和手機的電池效能會越來越低,科技產品每年都會更新軟硬體,當這些「身外之物」來到產品生命週期末尾時,我們總能輕易汰換。但當這個 3C 產品是放在腦膜底下,如何確保它不僅不會故障,還能好好充電,甚至可升級呢?

-----廣告,請繼續往下閱讀-----
N1 晶片有辦法像 Apple Watch 等「身外之物」一樣,隨時被汰換嗎?圖/envato

Neuralink 這次可是有備而來。首先是穩定性的部分,除了上次發表會看到能腦控《乓》遊戲的猴子佩吉外,這次還展示了其他五隻猴子分別進行不同的腦控遊戲。馬斯克特別強調,牠們都很享受這些實驗,包括這次展示腦控打字的 Sake。透過重複性的實驗,穩定性已獲得一定的保證。

續航力方面,團隊已經改良電池效率,並在猴子身上實驗了無線充電的可行性,確保一整天使用無虞。最後,也是最重要的「可升級性」。畢竟,目前的 N1 就如同 iPhone 一代,當技術演進到 iPhone 14 時,應該沒有人想繼續用舊款。因此,發表會上工程師們展示了 N1 晶片的手術過程有多簡易,完全使用手術機器人,輕鬆地在 15 分鐘內自動植入 64 個電極,再安全地把頭蓋骨和皮膚縫合回來。後續無論是軟硬體升級,只需要到他們正在建置的腦機介面診所就可進行。

目前,N1 晶片的製造已在奧斯汀開始產線準備進行量產。只要 FDA 核准,人體試驗成功的話,Neuralink 就有機會成為第一個達成商用化的腦機介面服務商。

競爭對手與未來展望

然而,Neuralink 只是「有機會」成為第一個達成商用的公司。這兩年,不止一家公司追上,甚至彎道超車,推出比 Neuralink 更接近完成品的產品。在這裡先賣個關子,預告下集我們將討論馬斯克的勁敵,以及可能導致 Neuralink 被指控虐待動物的爭議。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----