0

5
1

文字

分享

0
5
1

色色的電影有色色的味道?用氣味幫電影分級有搞頭?——2021 年搞笑諾貝爾化學獎

Rock Sun
・2021/10/09 ・4391字 ・閱讀時間約 9 分鐘
相關標籤: 科學生 (525)

-----廣告,請繼續往下閱讀-----

你喜歡看電影嗎?看電影是現代人類的一大樂趣,不管是大人帶小孩、情侶約會、朋友揪團還是單獨享受,你都一定多多少少找得到想看的電影,但是要說看電影最不想遇到的事,大概就是看了自己不想看、或是跟預期的不一樣的電影。

儘管現在我們有許多的評分系統和影評可以參考,但別忘了最最最基本,防止大家亂看電影的依據:電影分級系統。這套系統最早出現於 1960 年代的歐美,發展到現在幾乎全世界每個國家,都有一套獨門的電影年齡分級機制,讓小朋友遠離他們不該看的電影,或是向大家宣告有哪些電影是可以全家同樂。

要說這些電影年齡分級有什麼依據,硬要說的話就是其中主題元素,例如暴力、血腥、髒話……等,但是有時候就連普遍級電影也會讓你心驚膽戰、痛哭流涕、情緒激動,而限制級電影也有機會讓你笑哈哈,好像整個分級並沒有一個相當客觀的科學數據。

這也是為什麼一群來自德國馬克斯普朗克化學研究所(Max Planck Institute for Chemistry)的研究人員們有了一個很神奇的想法:何不用用人體散發的化學物質來作依據呢?

今年搞笑諾貝爾獎的化學獎,就頒給了這群來自德國、英國、紐西蘭、希臘、匈牙利和賽普勒斯的科學家( Jörg Wicker、Nicolas Krauter、Bettina Derstroff、Christof Stönner、Efstratios Bourtsoukidis、Achim Edtbauer、Jochen Wulf、Thomas Klüpfel、Stefan Kramer、Jonathan Williams ),他們在德國電影院中動了些手腳,收集了各種電影觀眾所產生的氣味化學資料,試圖以此為依據作出新的電影分級。

如果先說結果的話,就還真的可以喔!(注意以下的實驗目的主要是創造一個新的標準「輔助」現在的分級,而不是打掉重練。)

看電影時我們怎麼用化學的方式產生情緒?

人類無時無刻都會呼出和釋放出揮發性物質(volatile organic compounds,簡稱VOCs),而釋放這些物質的量和頻率與許多東西息息相關,其中一個就是情緒。

不要以為只有那種場面宏大的動作片、血漿噴不完的恐怖片或是情感豐富的劇情片才會讓人有明顯的情緒波動,事實上不管你看什麼電影,你一定多少會被劇情影響,不時肌肉緊繃、轉頭、前後移動、緊張冒汗、大口呼吸……等,這些小動作或多或少都讓整個影廳的空氣中瀰漫著大家產生的化學物質。(除非超級睡覺片,一進去就開始睡覺了)

-----廣告,請繼續往下閱讀-----

這群研究人員們就是想要在不同分級的電影中,蒐集空氣中的化學數據,想要打造一個以「氣味」為主要分級依據的全新制度,但是只靠一種化學物質根本不夠對全部年齡群體做出分級,因為電影會引發的情緒,常建立在人類複雜的感知上(也就是說通常暴力、性、反社會、嗑藥、粗話……等都全部都會混在一部電影裡) ,所以除了常見的二氧化碳外,他們還選擇異戊二烯(Isoprene)為指標,這種揮發性物質是我們呼出氣體中數量較少物質,但是一旦有任何身體的細微活動,異戊二烯的濃度都會有很明顯的變化。

電影院中的味道五味雜陳,可能與人釋放的化學物質有關。圖/Pixabay

超有限的電影數據蒐集

這群研究人員找上了一間位在德國美因茲(Mainz)的電影院,對方很順利的同意了實驗,唯一的要求就是不要妨礙觀眾觀影。

研究人員將能偵測空氣中物質的質譜儀,安裝在影廳的空調末端,每 30 秒監測影廳排出的空氣成份變化,他們在電影院的兩個影廳中進行了大約 8 星期的實驗,時間落在 2013~2014 和 2015~2016 的兩個冬天,每次實驗進行了 4 個星期,這段期間總共 11 部不同的電影在戲院上映,蒐集了 135 場電影的數據。

另外,也參考德國當地既有的電影分級標準,稱為 FSK( 德文:Freiwillige Selbstkontrolle der Filmwirtschaft;英文:Voluntary Self-Regulation of the Film Industry ),FSK 將電影分成 5 個層級:FSK0 表示全年齡都可以看、FSK6 表示 6 歲以下不能夠觀看、FSK12 則表示 12 歲以下不得觀看、接著按照同個邏輯還有 FSK16 和等同於限制級的 FSK18。

-----廣告,請繼續往下閱讀-----

但很不湊巧的,這段時間內沒有任何 FSK18 的電影上映,以下是這次研究中,收集氣味差異的電影內容與場次:

FSK 0 (全年齡皆可看)FSK 6 (6 歲以下不可看)FSK 12 (12 歲以下不可看)FSK 16 (16 歲以下不可看)
救命!我把老師縮小了!
(18 場次)
Buddy
(無中文翻譯,10 場次)
飢餓遊戲
(2 場次)
玩命法則
(1 場次)
我出去一下
(33 場次)
與恐龍冒險3D
(12 場次)
飢餓遊戲:星火燎原
(8 場次)
殺千刀重出江湖
(1 場次)
白日夢冒險王
(13 場次)
星際大戰:原力覺醒
(34 場次)
鬼入鏡 5:鬼次元
(3 場次)
表/參考資料 1

該怎麼確認濃度增加是因為電影情節?

回想一下看電影的情境,觀眾關在密閉的影廳裡,即便沒有播放任何電影,觀眾也會正常代謝,不斷釋放出化學物質,也就是說,即便影廳內並沒有播放任何電影,只要有觀眾在影廳內,空氣中的化學物質濃度就會越來越高。

因此,我們必須排除像上述這種「原本就會產生濃度改變的因素」,才能真的看到電影情節對空氣中的化學物質有什麼影響。

為了能有效分析一場電影中,影廳空氣內的化學物質變化與電影情節的關係,研究人員以 2015 年的德國全年齡向電影「我出去一下」的異戊二烯數據作為範例,解釋他們排除了什麼因素。

「我出去一下」這部電影按照電影播出時間所採集的異戊二烯數據 。圖/參考資料 1

上圖為原始的濃度變化資料,能看到在電影播放(紅色線段)的期間,異戊二烯持續增加,這就是前面提到的一群人坐在密閉空間中,正常的濃度變化趨勢。而紅色線段後的高峰,則是電影結束後觀眾起身離開座位,因肌肉運動所產生的大量異戊二烯。

-----廣告,請繼續往下閱讀-----

在去除掉電影結束的高峰,以及紅色線段的趨勢後,就會得到下圖,透過比較下圖的數據差異,才能找到電影情節對空氣中化學物質濃度的影響。

不同分級的電影,空氣中特定物質的濃度還真的不一樣

進入正式實驗中的電影共有 4 個年齡分級,每個年齡分級中會有一部電影會被挑出來做為標準組,而剩下的則做為實驗組,原本的期待是標準組的 4 部不同年齡分級的電影必須都要有超過 8 個場次,但是這個實驗方式在 FSK16 這個分級遇到困難,因為這分級的電影中有兩部只獲得一次的數據(2013 年的《玩命法則》和 2013 年的《殺千刀重出江湖》)所以它們被劃為一組評估,另外一組 FSK16 則是《靈動:鬼影實錄》,所以總共獲得了 24 組不同的標準和實驗組比較。

因為整個實驗的最終目的是為了知道「使用化學物質到底能不能區別不同分級的電影呢?」,被當作標準的化學物質必須要盡量講求精確,所以研究人員們將除了二氧化碳和異戊二烯外的許多化學物質也納入考量,看是否有更容易區別出電影的化學物質。

研究用特徵曲線(ROC Curve)來分析數據,這種分析方式也常用於機器學習領域,其結果代表的是「以某個參數值或模式作為二元判斷(好/壞、正確/錯誤)的基準,這個判斷基準的準確率有多高」,例如以心跳每分鐘大於 130 次為被嚇到的基準,就可以對收集完的數據做特徵曲線分析,看看心跳每分鐘大於 130 次是否是判斷被嚇到的好基準(怎麼做的可以參考這裡,會需要統計相關的背景知識)。

-----廣告,請繼續往下閱讀-----

以下的圖表,是各年齡層電影與電影院內特定化學物質的特徵曲線下面積(代表該基準判斷正確的比例)的分析結果。

除了二氧化碳和異戊二烯( Isoprene )外,研究人員也使用其他的化學物質來決定到底哪一個精確度底較高 。圖/參考資料 1

實驗者們設定曲線下面積(判斷正確的比例)必須要大於 0.7 (正確率達 70% 以上) 才具有分辨力,其中最明顯的莫過於異戊二烯(Isoprene)了。但是研究人員也發現一個問題,就是FSK16的數據精確度可能因為樣本過少所以差了一大截,所以接下來的分析則是以 FSK0、FSK6 和 FSK12 為主。

另外一次的分析重點則是想要知道:同個年齡分級的電影,會因為電影種類不同而異戊二烯反應有所不一樣嗎?

這裡研究人員挑了場次數量平均、電影種類「相對」比較多元的 FSK6 組來作檢測,這包含被定位為冒險動作片的 《 與恐龍冒險3D 》 以及兩個被定位為喜劇片的《Buddy》和《白日夢冒險王》 。


FSK6底下三部電影的精確度比較 。圖/參考資料 1

從以上的結果圖表可以看出來,3部電影的曲線圖表並沒有太大的差別,表示使用異戊二烯來作分級不會產生與現在分級上的區別,儘管其中混了一個特異的《 與恐龍冒險3D 》,但是這部電影也發生了一個有趣的現象就是他的標準差極大,如果在這個年層分級下多蒐集一點類似種類電影的數據或許會改善。

另外一個研究人員想知道的,是 FSK0 這個全年齡都可以觀賞的電影分級,會不會因為觀眾組成不同讓異戊二烯標準失去準確度呢?會不會因為一大群小朋友和一大群老人看電影相比就有所不一樣?

-----廣告,請繼續往下閱讀-----

由於該電影院針對 12 歲以下小朋友有票價優惠,因此從售票資訊得知觀眾實際的年齡組成其實不難。這次實驗中的兩部 FSK0 電影《 救命!我把老師縮小了! 》和 《 我出去一下 》的觀眾年齡組成也剛好非常不同,前者有高達 64% 的觀眾都是 12 歲以下的小朋友,而後者的觀眾全部都是 12 以上的人。


FSK0 全年齡向電影底下兩部電影的比較。圖/參考資料 1

曲線結果看似有很大的差別,但是實際上兩部電影的曲線下面積都高於設定的 0.7 不少,所以這方面研究者判定沒有影響。

最後,研究者呈現的以下的圖表,表示四個年齡分級電影中,異戊二烯的峰值比較。我們可以看出來從 FSK0 開始到 FSK16 峰值呈現增加的狀態,其中 FSK0 的電影放映中,有非常顯著的較低異戊二烯產生,這可能與電影本身並沒有太多的緊張感有關,而 FSK16 因為樣本數量非常少,看似並沒有比預期還高很多的數質。

每個電影分級異戊二烯的峰值統計 。圖/參考資料 1

整個獲得了搞笑諾貝爾化學獎的研究在這裡畫下了一個句點,我們知道使用異戊二烯來分析全年齡向 FSK0 到 12 歲以下不能觀看的 FSK12 是有它的準確度可以相信的,但目前還缺乏的東西也非常明顯,就是電影的樣本,如果 16 歲和 18 歲以上電影更多的話,他們還可以再增加更準確的分類依據。

如果這個研究持續做下去,可能未來不知道哪一天我們要去買電影票的時候,除了普遍級、限制級的標章,我們還會看到電影票上面寫著「根據看電影時你散發出來的味道,建議 XX 年齡以下不得觀看」,然後如果小朋友想故意闖關看 18+ 的電影,就會有氣味警察帶著儀器把人帶走喔~

  1. Proof of concept study: Testing human volatile organic compounds as tools for age classification of films

-----廣告,請繼續往下閱讀-----
文章難易度
Rock Sun
64 篇文章 ・ 964 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
腸道與聽力的神秘連結:你的聽覺健康可能藏在腸胃裡?
雅文兒童聽語文教基金會_96
・2025/02/20 ・3665字 ・閱讀時間約 7 分鐘

  • 作者 / 雅文基金會聽語科學研究中心 研究員|羅明

腸道的狀態會影響身體的健康,是現代人熟悉的保健觀念,就像廣告台詞所說的:胃腸顧好,人就快好。腸道狀態的影響力,可能比我們想像的多更多。已經有愈來愈多的研究報告指出,腸道狀態與聽覺系統之間,其實也有某種關聯。聽的好不好跟肚子好不好,究竟有什麼關係?讓我們繼續看下去。

腸腦軸線是什麼

開始之前,要先介紹「腸腦軸線」(gut-brain axis)的概念。研究證實,大腦的運作與腸道中的微生物群有所關聯。腸道若出現微生態失調(gut dysbiosis),除了生活品質水準降低 [1],大腦功能與外在行為也會受到影響。例如:容易無法集中精神 [2] [3]、睡眠品質不佳 [4],甚至是心理功能失調 [5] 等種種情況。

同時也有研究發現,某些大腦方面的失序和疾病,會伴隨腸道微生態失調的情況 [6]。例如:認知功能方面出現障礙的阿茲海默症(Alzheimer’s disease; [7] [8]),以及在疾病早期常先出現行動功能障礙的帕金森症 (Parkinson’s disease; [9] )。

大腦的運作與腸道中的微生物群有所關聯。圖/AI 創建

至於腸道與大腦是如何互相影響彼此,目前的研究告訴我們,大致上是透過幾條途徑:
1. 迷走神經(vagus nerve)
2. 下視丘-腦垂體-腎上腺系統(hypothalamic-pituitary-adrenal axis,簡稱 HPA 軸)
3. 免疫系統(immune system)
4. 神經傳導素(neurotransmitters)
5. 細菌代謝物(bacterial metabolites)

-----廣告,請繼續往下閱讀-----

總之,腸道菌相與身心健康之間,不論是在生理或心理的層面,都息息相關。而有另一批研究的結果指出,不只是大腦所在的中樞系統,這種關聯性還擴及到了「聽覺」所在的感官系統。尤其是迷走神經與免疫系統,我們將會提到它們在聽覺系統運作中的角色。

近年研究新發現:耳腸腦軸線

聽的好不好,也就是聽覺系統是否功能良好,同樣是身心健康重要的一環。聽覺系統本身可再分為周邊(含外耳、中耳、內耳)與中樞(含延腦、橋腦、中腦、大腦)等兩個子系統,而聲音一開始從外界進入聽覺系統,到最後能否解讀成功,取決於兩個子系統是否都能順利運作。

直到最近,種種間接顯示腸道狀態影響聽覺功能的資訊,引起了一些研究者的注意。例如,有一種基因同時與腸道和耳朵的發育有關,而先天性巨結腸症(或稱赫司朋氏症,Hirschsprung disease)的動物研究發現,這種基因的突變可能導致聽力損失 [10]

由於相關的資訊愈來愈多,近來有研究者進行了系統性的回顧,並根據得到的結果指出,人體中很可能還有一種可稱之為「耳腸腦軸線」(ear-gut-brain axis)的系統 [11] [12] [13] [14]。接下來,讓我們看看有哪些研究,支持著人體存在耳腸腦軸線的想法。

-----廣告,請繼續往下閱讀-----

人體中很可能存在一種「耳腸腦軸線」系統。圖/AI創建

迷走神經串接耳與腸

人類的腦神經中,迷走神經最長也分布最廣。這組神經起於延腦,而後下行至頸、胸、腹等部位。它在自主神經系統(autonomic nervous system)有著重要的角色,其中之一是自動調節消化系統的活動。觸及腸道與大腦的神經纖維中,訊息是雙向往返的,約有 10% 至 20% 的部分是從大腦往腸道傳送,而有 80% 至 90% 的部分則是從腸道送往大腦 [15]

迷走神經有許多分支,其中一支延伸到外耳之上,稱爲迷走神經耳分支(auricular branch)。有一個對象是成年女性的研究發現,如果在迷走神經耳分支施予刺激,會有助於消解發炎性腸道疾病(inflammatory bowel disease,簡稱 IBD)的疼痛感,以及減低症狀的嚴重程度 [16]。而這一類刺激方法,用於治療耳鳴(tinnitus)似乎也有效果,例如:減少耳鳴相關的症狀,以及舒緩耳鳴帶來的壓力感 [17] [18]

發炎性腸道疾病除了引發疼痛感,也可能伴隨耳鳴相關症狀。圖/AI 創建

發炎也會讓人聽的不好

我們在文章開頭時提到,由於腸腦軸線的存在,腸道失調與大腦異常顯現出清楚的關聯性。如果沿著相同的思路,則可預期腸道一旦出現異狀,透過耳腸腦軸線的作用,聽覺系統應該也會連帶發生問題。實際上, 在 IBD 這一類疾病的觀察中,的確不同的研究也有著類似的發現。

-----廣告,請繼續往下閱讀-----

無論是在外耳、中耳或內耳,都有研究資料顯示,這些部位的某些異狀會跟 IBD 有所關聯 [19]。尤其是感音性聽力損失,是 IBD 患者最常見的耳科疾病。有研究者回溯了32位IBD病患者的資料,結果發現其中的 22 位兼有感音性聽損,比例將近七成,而且在之中的 19 位,並無法找到其他能夠解釋聽損的原因 [20]

還有進一步比較潰瘍性結腸炎(ulcerative colitis)與克隆氏症(Crohn’s desease)兩群患者的研究也報告了一致的發現 [21]。相較於身體健康的對照組,感音性聽損在這一群患者有著較高的盛行率,而顯示聽損的聲音頻率則在 2000Hz、4000Hz 與 8000Hz 等高頻的範圍。值得注意的是,研究者也指出這些患者的聽力損失與年齡之間並沒有顯著的關係。

感音性聽力損失是發炎性腸道疾病患者最常見的耳科疾病。圖/AI 創建

此外,大腦中的微膠細胞(microglia)在活化時會釋放發炎物質,而聽力功能的異常也可能與這種發炎反應有關。已有動物研究指出,在噪音環境引起耳鳴與聽力損失之後,中樞聽覺系統的微膠細胞出現了較高的活化狀態 [22]

聽覺與消化的你來我往

就如迷走神經的研究指出的,聽覺與消化之間的關係,可能也是一種雙向的互動。除了聽力損失伴隨腸道發炎出現之外,新近的研究還透露出,聽音樂,對於腸道來說也有著補充益生菌的效果。研究者在實驗室餵養 30 天的老鼠身上發現,餵養期間也接觸音樂的老鼠們,在第 25 天的體重,顯著高於沒有接觸音樂的老鼠;不僅如此,那些每天固定聽音樂六個小時的老鼠們,腸道裡的壞菌減少了,腸道的菌相也因此變得更好了 [23]。沒想到,聽覺系統不只是接收訊息的管道而已,還可能在無形中影響著消化系統的運作。

-----廣告,請繼續往下閱讀-----

「耳腸腦軸線」的想法,對於聽力保健而言,或許帶來另一個思考的角度:除了瞭解如何避免聽覺系統的器官受到損傷,多加留意消化系統是否正常運作,也可能是同樣重要的事情。如此一來,除了「胃腸顧好,人就快好」,未來還可以再說:腸道好,「聽」也好。

  1. Gracie, D. J., Williams, C. J., Sood, R., Mumtaz, S., Bholah, M. H., Hamlin, P. J., et al. (2017). Negative effects on psychological health and quality of life of genuine irritable bowel syndrome–type symptoms in patients with inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 15, 376–384. https://doi.org/ 10.1016/j.cgh.2016.05.012
  2. van Langenberg, D. R., & Gibson, P. R. (2010). Systematic review: Fatigue in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 32, 131–143.
  3. D’Silva, A., Fox, D. E., Nasser, Y., Vallance, J. K., Quinn, R. R., Ronksley, P. E., & Raman, M. (2022). Prevalence and risk factors for fatigue in adults with inflammatory bowel disease: A systematic review with meta-analysis. Clinical gastroenterology and hepatology: the official clinical practice. journal of the American Gastroenterological Association, 20(5), 995–1009.e7. https://doi.org/10.1016/j.cgh.2021.06.034
  4. Van Langenberg, D. R., Yelland, G. W., Robinson, S. R., and Gibson, P. R. (2017). Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United European Gastroenterology Journal, 5, 579–587. https://doi.org/10.1177/2050640616663397
  5. Ng, J. Y., Chauhan, U., Armstrong, D., Marshall, J., Tse, F., Moayyedi, P., et al. (2018). A comparison of the prevalence of anxiety and depression between uncomplicated and complex Ibd patient groups. Gastroenterology Nursing, 41, 427–435. https://doi.org/10.1097/ SGA.0000000000000338
  6. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: a review. Annals of Neurology, 81, 369–382. https://doi.org/10.1002/ana.24901
  7. Vogt, N. M., Kerby, R. L., Dill-Mcfarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 1–11. https://doi.org/10.1038/s41598-017-13601-y
  8. Haran, J. P., Bhattarai, S. K., Foley, S. E., Dutta, P., Ward, D. V., Bucci, V., et al. (2019). Alzheimer’s disease microbiome is associated with dysregulation of the anti- inflammatory P-glycoprotein pathway. mBio, 10, e00632–e00619. https://doi.org/10.1128/ mBio.00632-19
  9. Romano, S., Savva, G. M., Bedarf, J. R., Charles, I. G., Hildebrand, F., & Narbad, A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. npj Parkinson’s Disease, 7, 1–13. https://doi.org/10.1038/s41531-021-00156-z
  10. Ohgami, N., Ida-Eto, M., Shimotake, T., Sakashita, N., Sone, M., Nakashima, T., et al. (2010). C-ret–mediated hearing loss in mice with Hirschsprung disease. Proceedings of the National Academy of Sciences, 107, 13051–13056. https://doi.org/10.1073/pnas.1004520107
  11. Denton, A. J., Godur, D. A., Mittal, J., Bencie, N. B., Mittal, R., & Eshraghi, A. A. (2022). Recent advancements in understanding the gut microbiome and the inner ear Axis. Otolaryngologic Clinics of North America, 55, 1125–1137. https://doi.org/10.1016/j.otc.2022.07.002
  12. Graham et al., 2023
    Graham, A. S., Ben-Azu, B., Tremblay, M. È., Torre, P., 3rd, Senekal, M., Laughton, B., van der Kouwe, A., Jankiewicz, M., Kaba, M., & Holmes, M. J. (2023). A review of the auditory-gut-brain axis. Frontiers in Neuroscience, 17, 1183694. https://doi.org/10.3389/fnins.2023.1183694
  13. Kociszewska, D., & Vlajkovic, S. M. (2022). The association of inflammatory gut diseases with neuroinflammatory and auditory disorders. Frontiers in Bioscience-Elite, 14:8. https://doi.org/10.31083/j.fbe1402008
  14. Megantara, I., Wikargana, G. L., Dewi, Y. A., Permana, A. D., & Sylviana, N. (2022). The role of gut Dysbiosis in the pathophysiology of tinnitus: a literature review. International Tinnitus Journal, 26, 27–41. https://doi.org/10.5935/0946-5448.20220005
  15. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9:44. https://doi.org/10.3389/fpsyt.2018.00044
  16. Mion, F., Pellissier, S., Garros, A., Damon, H., Roman, S., and Bonaz, B. (2020). Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectronics in Medicine, 3, 5–12. https://doi.org/10.2217/ bem-2020-0004
  17. Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 133, 378–382. https://doi.org/10.3109/00016489.2012.750736
  18. Ylikoski, J., Markkanen, M., Pirvola, U., Lehtimäki, J. A., Ylikoski, M., Jing, Z., et al. (2020). Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction. Frontiers in Psychology, 11:2442. https://doi.org/10.3389/ fpsyg.2020.570196
  19. Fousekis, F. S., Saridi, M., Albani, E., Daniel, F., Katsanos, K. H., Kastanioudakis, I. G., et al. (2018). Ear involvement in inflammatory bowel disease: a review of the literature. Journal of Clinical Medicine Research, 10(8), 609–614. https://doi.org/10.14740/jocmr3465w
  20. Karmody, C. S., Valdez, T. A., Desai, U., & Blevins, N. H. (2009). Sensorineural hearing loss in patients with inflammatory bowel disease. American Journal of Otolaryngology, 30, 166–170.
  21. Akbayir, N., Çaliş, A. B., Alkim, C., Sökmen, H. M. M., Erdem, L., Özbal, A., et al. (2005). Sensorineural hearing loss in patients with inflammatory bowel disease: A subclinical extraintestinal manifestation. Digestive Diseases and Sciences, 50, 1938–1945. https://doi.org/10.1007/ s10620-005-2964-3
  22. Wang, W., Zhang, L. S., Zinsmaier, A. K., Patterson, G., Leptich, E. J., Shoemaker, S. L., et al. (2019). Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biology, 17:e3000307. https://doi.org/10.1371/ journal.pbio.3000307
  23. Niu, J., Xu, H., Zeng, G. et al. (2023). Music-based interventions in the feeding environment on the gut microbiota of mice. Scientific Reports, 13, 6313. https://doi.org/10.1038/s41598-023-33522-3
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。