Loading [MathJax]/extensions/tex2jax.js

0

5
1

文字

分享

0
5
1

色色的電影有色色的味道?用氣味幫電影分級有搞頭?——2021 年搞笑諾貝爾化學獎

Rock Sun
・2021/10/09 ・4391字 ・閱讀時間約 9 分鐘
相關標籤: 科學生 (511)

-----廣告,請繼續往下閱讀-----

你喜歡看電影嗎?看電影是現代人類的一大樂趣,不管是大人帶小孩、情侶約會、朋友揪團還是單獨享受,你都一定多多少少找得到想看的電影,但是要說看電影最不想遇到的事,大概就是看了自己不想看、或是跟預期的不一樣的電影。

儘管現在我們有許多的評分系統和影評可以參考,但別忘了最最最基本,防止大家亂看電影的依據:電影分級系統。這套系統最早出現於 1960 年代的歐美,發展到現在幾乎全世界每個國家,都有一套獨門的電影年齡分級機制,讓小朋友遠離他們不該看的電影,或是向大家宣告有哪些電影是可以全家同樂。

要說這些電影年齡分級有什麼依據,硬要說的話就是其中主題元素,例如暴力、血腥、髒話……等,但是有時候就連普遍級電影也會讓你心驚膽戰、痛哭流涕、情緒激動,而限制級電影也有機會讓你笑哈哈,好像整個分級並沒有一個相當客觀的科學數據。

這也是為什麼一群來自德國馬克斯普朗克化學研究所(Max Planck Institute for Chemistry)的研究人員們有了一個很神奇的想法:何不用用人體散發的化學物質來作依據呢?

今年搞笑諾貝爾獎的化學獎,就頒給了這群來自德國、英國、紐西蘭、希臘、匈牙利和賽普勒斯的科學家( Jörg Wicker、Nicolas Krauter、Bettina Derstroff、Christof Stönner、Efstratios Bourtsoukidis、Achim Edtbauer、Jochen Wulf、Thomas Klüpfel、Stefan Kramer、Jonathan Williams ),他們在德國電影院中動了些手腳,收集了各種電影觀眾所產生的氣味化學資料,試圖以此為依據作出新的電影分級。

如果先說結果的話,就還真的可以喔!(注意以下的實驗目的主要是創造一個新的標準「輔助」現在的分級,而不是打掉重練。)

看電影時我們怎麼用化學的方式產生情緒?

人類無時無刻都會呼出和釋放出揮發性物質(volatile organic compounds,簡稱VOCs),而釋放這些物質的量和頻率與許多東西息息相關,其中一個就是情緒。

不要以為只有那種場面宏大的動作片、血漿噴不完的恐怖片或是情感豐富的劇情片才會讓人有明顯的情緒波動,事實上不管你看什麼電影,你一定多少會被劇情影響,不時肌肉緊繃、轉頭、前後移動、緊張冒汗、大口呼吸……等,這些小動作或多或少都讓整個影廳的空氣中瀰漫著大家產生的化學物質。(除非超級睡覺片,一進去就開始睡覺了)

-----廣告,請繼續往下閱讀-----

這群研究人員們就是想要在不同分級的電影中,蒐集空氣中的化學數據,想要打造一個以「氣味」為主要分級依據的全新制度,但是只靠一種化學物質根本不夠對全部年齡群體做出分級,因為電影會引發的情緒,常建立在人類複雜的感知上(也就是說通常暴力、性、反社會、嗑藥、粗話……等都全部都會混在一部電影裡) ,所以除了常見的二氧化碳外,他們還選擇異戊二烯(Isoprene)為指標,這種揮發性物質是我們呼出氣體中數量較少物質,但是一旦有任何身體的細微活動,異戊二烯的濃度都會有很明顯的變化。

電影院中的味道五味雜陳,可能與人釋放的化學物質有關。圖/Pixabay

超有限的電影數據蒐集

這群研究人員找上了一間位在德國美因茲(Mainz)的電影院,對方很順利的同意了實驗,唯一的要求就是不要妨礙觀眾觀影。

研究人員將能偵測空氣中物質的質譜儀,安裝在影廳的空調末端,每 30 秒監測影廳排出的空氣成份變化,他們在電影院的兩個影廳中進行了大約 8 星期的實驗,時間落在 2013~2014 和 2015~2016 的兩個冬天,每次實驗進行了 4 個星期,這段期間總共 11 部不同的電影在戲院上映,蒐集了 135 場電影的數據。

另外,也參考德國當地既有的電影分級標準,稱為 FSK( 德文:Freiwillige Selbstkontrolle der Filmwirtschaft;英文:Voluntary Self-Regulation of the Film Industry ),FSK 將電影分成 5 個層級:FSK0 表示全年齡都可以看、FSK6 表示 6 歲以下不能夠觀看、FSK12 則表示 12 歲以下不得觀看、接著按照同個邏輯還有 FSK16 和等同於限制級的 FSK18。

-----廣告,請繼續往下閱讀-----

但很不湊巧的,這段時間內沒有任何 FSK18 的電影上映,以下是這次研究中,收集氣味差異的電影內容與場次:

FSK 0 (全年齡皆可看)FSK 6 (6 歲以下不可看)FSK 12 (12 歲以下不可看)FSK 16 (16 歲以下不可看)
救命!我把老師縮小了!
(18 場次)
Buddy
(無中文翻譯,10 場次)
飢餓遊戲
(2 場次)
玩命法則
(1 場次)
我出去一下
(33 場次)
與恐龍冒險3D
(12 場次)
飢餓遊戲:星火燎原
(8 場次)
殺千刀重出江湖
(1 場次)
白日夢冒險王
(13 場次)
星際大戰:原力覺醒
(34 場次)
鬼入鏡 5:鬼次元
(3 場次)
表/參考資料 1

該怎麼確認濃度增加是因為電影情節?

回想一下看電影的情境,觀眾關在密閉的影廳裡,即便沒有播放任何電影,觀眾也會正常代謝,不斷釋放出化學物質,也就是說,即便影廳內並沒有播放任何電影,只要有觀眾在影廳內,空氣中的化學物質濃度就會越來越高。

因此,我們必須排除像上述這種「原本就會產生濃度改變的因素」,才能真的看到電影情節對空氣中的化學物質有什麼影響。

為了能有效分析一場電影中,影廳空氣內的化學物質變化與電影情節的關係,研究人員以 2015 年的德國全年齡向電影「我出去一下」的異戊二烯數據作為範例,解釋他們排除了什麼因素。

「我出去一下」這部電影按照電影播出時間所採集的異戊二烯數據 。圖/參考資料 1

上圖為原始的濃度變化資料,能看到在電影播放(紅色線段)的期間,異戊二烯持續增加,這就是前面提到的一群人坐在密閉空間中,正常的濃度變化趨勢。而紅色線段後的高峰,則是電影結束後觀眾起身離開座位,因肌肉運動所產生的大量異戊二烯。

-----廣告,請繼續往下閱讀-----

在去除掉電影結束的高峰,以及紅色線段的趨勢後,就會得到下圖,透過比較下圖的數據差異,才能找到電影情節對空氣中化學物質濃度的影響。

不同分級的電影,空氣中特定物質的濃度還真的不一樣

進入正式實驗中的電影共有 4 個年齡分級,每個年齡分級中會有一部電影會被挑出來做為標準組,而剩下的則做為實驗組,原本的期待是標準組的 4 部不同年齡分級的電影必須都要有超過 8 個場次,但是這個實驗方式在 FSK16 這個分級遇到困難,因為這分級的電影中有兩部只獲得一次的數據(2013 年的《玩命法則》和 2013 年的《殺千刀重出江湖》)所以它們被劃為一組評估,另外一組 FSK16 則是《靈動:鬼影實錄》,所以總共獲得了 24 組不同的標準和實驗組比較。

因為整個實驗的最終目的是為了知道「使用化學物質到底能不能區別不同分級的電影呢?」,被當作標準的化學物質必須要盡量講求精確,所以研究人員們將除了二氧化碳和異戊二烯外的許多化學物質也納入考量,看是否有更容易區別出電影的化學物質。

研究用特徵曲線(ROC Curve)來分析數據,這種分析方式也常用於機器學習領域,其結果代表的是「以某個參數值或模式作為二元判斷(好/壞、正確/錯誤)的基準,這個判斷基準的準確率有多高」,例如以心跳每分鐘大於 130 次為被嚇到的基準,就可以對收集完的數據做特徵曲線分析,看看心跳每分鐘大於 130 次是否是判斷被嚇到的好基準(怎麼做的可以參考這裡,會需要統計相關的背景知識)。

-----廣告,請繼續往下閱讀-----

以下的圖表,是各年齡層電影與電影院內特定化學物質的特徵曲線下面積(代表該基準判斷正確的比例)的分析結果。

除了二氧化碳和異戊二烯( Isoprene )外,研究人員也使用其他的化學物質來決定到底哪一個精確度底較高 。圖/參考資料 1

實驗者們設定曲線下面積(判斷正確的比例)必須要大於 0.7 (正確率達 70% 以上) 才具有分辨力,其中最明顯的莫過於異戊二烯(Isoprene)了。但是研究人員也發現一個問題,就是FSK16的數據精確度可能因為樣本過少所以差了一大截,所以接下來的分析則是以 FSK0、FSK6 和 FSK12 為主。

另外一次的分析重點則是想要知道:同個年齡分級的電影,會因為電影種類不同而異戊二烯反應有所不一樣嗎?

這裡研究人員挑了場次數量平均、電影種類「相對」比較多元的 FSK6 組來作檢測,這包含被定位為冒險動作片的 《 與恐龍冒險3D 》 以及兩個被定位為喜劇片的《Buddy》和《白日夢冒險王》 。


FSK6底下三部電影的精確度比較 。圖/參考資料 1

從以上的結果圖表可以看出來,3部電影的曲線圖表並沒有太大的差別,表示使用異戊二烯來作分級不會產生與現在分級上的區別,儘管其中混了一個特異的《 與恐龍冒險3D 》,但是這部電影也發生了一個有趣的現象就是他的標準差極大,如果在這個年層分級下多蒐集一點類似種類電影的數據或許會改善。

另外一個研究人員想知道的,是 FSK0 這個全年齡都可以觀賞的電影分級,會不會因為觀眾組成不同讓異戊二烯標準失去準確度呢?會不會因為一大群小朋友和一大群老人看電影相比就有所不一樣?

-----廣告,請繼續往下閱讀-----

由於該電影院針對 12 歲以下小朋友有票價優惠,因此從售票資訊得知觀眾實際的年齡組成其實不難。這次實驗中的兩部 FSK0 電影《 救命!我把老師縮小了! 》和 《 我出去一下 》的觀眾年齡組成也剛好非常不同,前者有高達 64% 的觀眾都是 12 歲以下的小朋友,而後者的觀眾全部都是 12 以上的人。


FSK0 全年齡向電影底下兩部電影的比較。圖/參考資料 1

曲線結果看似有很大的差別,但是實際上兩部電影的曲線下面積都高於設定的 0.7 不少,所以這方面研究者判定沒有影響。

最後,研究者呈現的以下的圖表,表示四個年齡分級電影中,異戊二烯的峰值比較。我們可以看出來從 FSK0 開始到 FSK16 峰值呈現增加的狀態,其中 FSK0 的電影放映中,有非常顯著的較低異戊二烯產生,這可能與電影本身並沒有太多的緊張感有關,而 FSK16 因為樣本數量非常少,看似並沒有比預期還高很多的數質。

每個電影分級異戊二烯的峰值統計 。圖/參考資料 1

整個獲得了搞笑諾貝爾化學獎的研究在這裡畫下了一個句點,我們知道使用異戊二烯來分析全年齡向 FSK0 到 12 歲以下不能觀看的 FSK12 是有它的準確度可以相信的,但目前還缺乏的東西也非常明顯,就是電影的樣本,如果 16 歲和 18 歲以上電影更多的話,他們還可以再增加更準確的分類依據。

如果這個研究持續做下去,可能未來不知道哪一天我們要去買電影票的時候,除了普遍級、限制級的標章,我們還會看到電影票上面寫著「根據看電影時你散發出來的味道,建議 XX 年齡以下不得觀看」,然後如果小朋友想故意闖關看 18+ 的電影,就會有氣味警察帶著儀器把人帶走喔~

  1. Proof of concept study: Testing human volatile organic compounds as tools for age classification of films

-----廣告,請繼續往下閱讀-----
文章難易度
Rock Sun
64 篇文章 ・ 959 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃