Loading [MathJax]/extensions/tex2jax.js

5

11
2

文字

分享

5
11
2

別懷疑,Google 真的知道你在想什麼! 蜂鳥演算法如何提升人類的搜尋體驗?

Abby T
・2021/08/26 ・4467字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

打開 Google 輸入「水煮蛋」,Google 會知道,你是想了解「水煮蛋的煮法」,並且快速地給出你想要的答案。

或是只輸入「麵包店」,Google 就會自動推測,你是想找附近的麵包店。因此會依照你的網路所在位置,優先提供附近麵包店的資訊。

能有以上更方便的搜尋方式,和更能滿足使用者需求的搜尋結果,都是蜂鳥演算法加強「語意判讀」和更理解「搜尋意圖」的功勞。

搜尋引擎的基本原理,分別是爬文(Crawling)、收錄 (Indexing)和排名(Ranking)三步驟。首先必須透過爬文蒐集資料,再把這些資料收編和儲存進 Google 的資料庫,最後則是網站經營者或 SEO 專家最關心的排名步驟──也就是 Google 如何決定哪些資料要優先推薦給使用者。

而演算法就像是為上述整個過程套上一個公式,不同公式能導出不同計算過程和結果,連帶影響 Google 給出的搜尋結果,比如「咖啡因演算法」改變了網頁收錄的方式,「熊貓演算法」則大大提升網頁內容品質。那,蜂鳥演算法帶來哪些影響呢?

-----廣告,請繼續往下閱讀-----

蜂鳥演算法:讓「搜尋意圖」判斷更進化

蜂鳥演算法(Google Hummingbird)是Google 演算法歷屆演變中,相當重要的變革之一,因為它並非只針對舊有的演算法做出些微調整,而是一口氣替換掉演算法的核心,不過也同時保留了部分舊有演算法的元素。

在蜂鳥演算法出現以前,Google 本來只會從搜尋字串中抓出幾個關鍵字,判斷各個字詞字面上的意思,再從資料庫中找出有關鍵字詞的資料。例如:使用者搜尋「水煮蛋 時間」,Google 可能會從資料庫中撈出同時有提到「水煮蛋」和「烹調時間」的網頁,再排序推薦給使用者。

反過來說,如果使用者想知道水煮蛋需要煮多久才會熟,直接搜尋「水煮蛋需要煮多久才會熟」如此直白語句,未必找得到答案,因此使用者可能必須將問題先切成幾個關鍵字,轉換成 Google 看得懂的語言,如「水煮蛋 時間」,或是推測可能要看水煮蛋食譜才能解決問題,而改搜尋「水煮蛋 食譜」或「水煮蛋 步驟」。

簡單來說,使用者會需要配合搜尋引擎能理解的語言來提問,才能找到需要的資訊。但如果搜尋前,還得先思考要打什麼關鍵字才能找到答案,豈不是很麻煩嗎? 

-----廣告,請繼續往下閱讀-----

Google 搜尋引擎秉持的理念是,要提供最相關的資訊給使用者,且讓使用者花越少時間在搜尋越好。換句話說,就是要讓使用者在最短的時間內獲得想要的資訊──「速度」跟「精確度」是兩大重點,而蜂鳥演算法的出現大大改善了這兩個問題。

蜂鳥雖然體型嬌小,卻以翅膀振動速度飛快和敏捷行動力出名,而蜂鳥演算法正如其名,希望帶給使用者的搜尋體驗能是快而精準。

但要如何做到?最重要的關鍵是,要能更了解使用者想要找什麼樣的資訊、使用者為什麼要搜尋該關鍵字,也就是要判讀所謂使用者的「搜尋意圖」。 

搜尋意圖(Search Intent)是什麼?

簡單來說,搜尋意圖就是使用者搜尋的「目的」,可以是想知道關鍵字是什麼意思、想要購買商品、想找到某個網站等。蜂鳥演算法正式運行以後,我們已能更準確地從搜尋結果頁面,來推測使用者的搜尋意圖。

-----廣告,請繼續往下閱讀-----

舉例來說,搜尋關鍵字「演算法」,搜尋結果第一頁會出現有關演算法的介紹,因此可以推測使用者,使用者搜尋「演算法」,應該就是想了解演算法是什麼。

圖/作者提供

再看一下關鍵字「水煮蛋」,搜尋結果第一頁上的內容大多是在介紹「水煮蛋的煮法」,諸如水煮蛋要煮多久等等,而非水煮蛋的營養成分等知識性內容。也就是說,Google 猜測,查詢「水煮蛋」的使用者,最想知道的是「水煮蛋怎麼煮」,而不是有關水煮蛋的知識。

圖/作者提供

判斷搜尋意圖未必是件容易的事,但對執行搜尋引擎優化(SEO)來說卻很重要。因為 Google 會提供給使用者的是和搜尋意圖最相關的資訊,因此正確掌握搜尋意圖,正是做好 SEO 的第一步。

以水煮蛋為例,如果你經營的網站,寫了一篇水煮蛋「營養成分的介紹文章」。但因為搜尋「水煮蛋」的使用者,比較想了解的是水煮蛋的「製作方式」,所以 Google 很可能不會把你的文章排得太前面。

-----廣告,請繼續往下閱讀-----

蜂鳥演算法如何幫助 Google 更精確地判斷搜尋意圖? 

在蜂鳥演算法推出前,Google 先推出了語音搜尋的服務,用口語表達的方式即可以執行搜尋。比起文字輸入搜尋,語音搜尋的用語更為自然、口語化,比如以文字搜尋時,使用者可能會輸入「水煮蛋製作」,但使用語音搜尋時,卻可能會說出較為口語的「水煮蛋怎麼做」。

此時,如何解讀使用者的搜尋字詞變得相當重要,而蜂鳥演算法帶來最大的改變是從字詞上的辨識,進階成為「語意上的解讀」。

也就是說,Google 本來只會根據關鍵字提供對應的資料給使用者,但蜂鳥演算法的導入,卻讓 Google 開始學會讀取上下文。能將所有輸入的字詞融為整體作判斷,並參照彼此間的關聯性去推測更深層的意涵,而非單單只是把搜尋字詞看成是有很多關鍵字集合的字串。

比如搜尋關鍵字「明天天氣」,若只抓取字面上的關鍵字,搜尋引擎可能只會判斷使用者想知道天氣,所以會提供各縣市天氣預報。但是加入語意上的判讀後,Google 會將「明天天氣」此搜尋字詞理解為「使用者想知道所在區域的明天天氣狀況」,便會在使用者有授權的情況下,自動參考使用者的位置資訊,進而提供使用者所在位置的天氣資訊。

-----廣告,請繼續往下閱讀-----
圖/作者提供

蜂鳥演算法對搜尋引擎優化(SEO)的影響?

如果蜂鳥演算法只是強化了Google 對於搜尋字詞的理解能力,那麼對於網頁在搜尋結果的排名,理論上來說應該沒有直接影響?

但實際上,蜂鳥演算法雖然沒有改變影響排名的因素,但對於網站流量的成效和 SEO 執行策略方面卻有帶來一些改變。

1.流量可能變少

在蜂鳥演算法導入的前一年,Google 推出了「知識圖譜」(knowledge graph)功能。它結合了語意分析和資料蒐集,事先彙整了一些使用者可能需要資料,只要使用者一搜尋相關關鍵字,Google 就能從資料庫中提取資料,提供現成的知識圖譜,讓使用者的疑問能快速被回答。使用者甚至不需要點入任何搜尋結果就能得到答案,例如搜尋「強尼戴普幾歲」:

圖/作者提供

從搜尋結果最上方及右側的知識面板,就能立即得到強尼戴普的年齡和其他相關資訊,甚至不需要點入維基百科查看。

-----廣告,請繼續往下閱讀-----

這對於使用者來說當然是好事,畢竟搜尋問題能立刻得到答案,還不需要自己一一點入網站彙整需要的資訊。相反的,對於網站主來說,語意理解加知識圖譜的出現卻會是個威脅,因為辛苦策劃了網頁內容,卻可能吸引不到點擊/流量。這時候的網頁排名競爭,相當於要競爭的對手不只是其他網站,還有 Google 本身。

2.長尾關鍵字更受歡迎

因為語音搜尋服務的推出,使用者的搜尋字詞開始越來越口語化,而這些口語化的搜尋字詞,是屬於搜尋量較少、非主要搜尋字詞的長尾關鍵字。本來在蜂鳥演算法推出以前,Google 比較不擅長將這類長尾關鍵字和相對應的網頁內容串連在一起,SEO 操作上較少選擇長尾關鍵字作為要操作的目標關鍵字。在蜂鳥演算法導入之後,Google 的關鍵字語意判讀能力提升,才能逐漸辨識這些長尾關鍵字的搜尋意圖。

SEO 策略能如何因應蜂鳥演算法調整?

延續前一段提到蜂鳥演算法對 SEO 的影響,可以了解蜂鳥演算法與網頁排名指標較沒直接關係,網站主沒辦法針對特定因素進行優化,因此只能將重心放在優化網頁內容,增加搜尋引擎將網站推薦給使用者的機會。

常見的 SEO 優化策略有:

-----廣告,請繼續往下閱讀-----

1.多發布優質內容

針對網站主題多發布相關的原創內容,網站內容越豐富,越有機會解答使用者的問題。

2.加強文章的廣度

文章內容題材涵蓋範圍越廣,越能解決使用者可能會有的疑問。能一文解決使用者所有疑問的文章,有較高的機會被Google 認定為優質內容,進而推薦給使用者,而使用者也可能透過搜尋不同疑問接觸到同一篇文章。

3.善用長尾關鍵字

上段有提到蜂鳥演算法讓長尾關鍵字越來越受歡迎,代表使用者會更容易透過搜尋長尾關鍵字而接觸到相關網頁。網站主可以善用蜂鳥演算法能理解長尾關鍵字語意的特性,挑選適合的長尾關鍵字作為 SEO 的操作目標,或許反而能因為長尾關鍵字競爭程度相對小、搜尋意圖相對明確的優勢,讓網頁更有機會獲得好排名。

以上三個策略,都是著重在「如何用內容增加網頁曝光」的機會,所以最後還是老話一句,當你不曉得 Google 演算法革新帶來什麼影響、不知道該如何因應改變時,只要記住:持續提供優質內容、解決越多使用者的問題,就是做好 SEO 的最高原則。

蜂鳥演算法對搜尋引擎使用者的影響

蜂鳥演算法是 Google 用來判斷搜尋意圖的一大利器,透過精準掌握搜尋意圖,達到能快速提供使用者有用資訊的效果。Google 對關鍵字的理解,從初階的「詞彙」辨識,進階到「語意」上的解讀。因此,Google 更加清楚理解,使用者對搜尋引擎提出的問題,究竟是在問什麼,以及使用者預期想得到的答案又是什麼。

Google 彷彿真的知道,在電腦前輸入關鍵字的你我在想些什麼。例如正想自製早午餐的你,搜尋「法式吐司」,Google 會馬上告訴你,做出好吃法式吐司的方法。搜尋「最佳燒烤店」,Google 會找出離你最近的高評價燒烤店資訊(而不是依照「最佳燒烤店」字面上的意思,列出全世界最高分的燒烤店)。

藉由蜂鳥演算法的幫助,Google 大神不只有問必答,提供的答案也一點都不馬虎,能確實幫助使用者解決問題。

從蜂鳥演算法對使用者的影響來看,基本上是有益無害。蜂鳥演算法能將多樣化的使用者問題和網頁提供的資訊,更精準地連接在一起。並加入知識圖譜、本地資訊等貼心服務,優化使用者體驗。不僅可以讓使用者使用更人性化的用詞搜尋,得到的搜尋結果往往也更符合所需。

不過,蜂鳥演算法在語意判讀的精準度能否更提升,精準度是否會因不同語言而有差異?仍是值得持續觀察的問題。

  1. Google Hummingbird – Moz
  2. Searcher Intent: The Overlooked ‘Ranking Factor’ You Should Be Optimizing For – Ahrefs
  3. SEO 搜尋引擎優化 – JKL SEO
  4. 搜尋引擎原理 – JKL SEO
  5. Should You Change Your SEO Strategy Because of Google Hummingbird? – Neilpatel
  6. 什麼是長尾關鍵字?流量不是最多但非常重要的 SEO 觀念! – dcplus
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
Abby T
5 篇文章 ・ 7 位粉絲
任職於 JKL SEO 公司的 SEO 顧問兼內容行銷專欄作家。對 SEO搜尋引擎優化相關演算法小有研究,致力於將 SEO 相關知識,以淺顯易懂方式撰寫成科普文章,使普羅大眾有機會認識 SEO 這項專業數位行銷技術。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。