Loading [MathJax]/extensions/tex2jax.js

2

16
1

文字

分享

2
16
1

錄音帶才不只是文青復古小物!來看數據磁帶如何在網路時代穢土轉生

羅夏_96
・2021/08/04 ・4351字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

編按:「磁帶」一度從80年代蝦趴到90年代、更可說是蘋果電腦經典產品ipod的始祖!本文旨在讓00後的讀者認識這個傳奇發明、90後的朋友溫故知新、80後的朋友以古鑑今!

《咒術迴戰》中的七海健人有云:「枕邊掉的頭髮越來越多,喜歡的夾菜麵包從便利商店消失,這些微小的絕望不斷積累,才會使人長大。」——泛科《童年崩壞》專題邀請各位讀者重新檢視童年時期的產物,讓你的童年持續崩壞不停歇 ψ(`∇´)ψ

你看過下面的酷東西嗎?對稍有年紀的讀者來說,它乘載了滿滿的青春回憶。但對年輕的讀者來說,卻可能看都沒看過⋯⋯

認識錄音帶已變成會暴露年齡的一種事。圖/pixabay

這東西的名稱是「磁帶」,可用來記錄各類資訊。1980 ~ 1990 年代是它的黃金年代,從音樂影視到電腦資料,都是用磁帶做為儲存媒介。各大科技公司也針對磁帶設計出不少經典的影音播放器,例如大名鼎鼎的 Sony Walkman 隨身聽。但隨著 MP3 等儲存媒介飛速發展,磁帶逐漸遭市場淘汰,也讓不少人都認為它跟 BB call 一樣走入歷史。但事實上,磁帶不僅沒有消失,甚至在專業領域浴火重生,成為許多高科技公司和科學單位所仰賴的重要儲存工具。接下來,讓我們一起來看看磁帶的前世與今生吧!

磁帶的作用原理

在講磁帶的歷史前,我們得先了解磁帶背後的作用原理。

磁帶是磁儲存 (Magnetic storage) 的一種方式,那甚麼是磁儲存呢?簡單來說,是將資料儲存在磁性媒介上的技術

磁儲存背後所應用的原理是「電磁感應」和「電流磁效應」。電磁感應是磁場的變化會產生電流的「磁生電」效應;電流磁效應則是電流的變化會產生磁場的「電生磁」效應。這兩種效應就讓科學家對資料記錄產生的新想法:既然電可生磁、磁也可生電,那將電訊號轉換成磁場並記錄在磁性物質上,之後再用這些被記錄的磁場轉換回電訊號,不就能實現資料的儲存和輸出嗎?而這個想法正是磁儲存的基本原理。

當我們要寫入資訊的時候,訊號所產生的電流會讓記錄頭 (Record head) 的電磁鐵產生磁場,而這個磁場就會改變磁帶上磁粉的排列方式,如此便將資訊以磁場排列的方式記錄下來。而要讀取的時候只要反過來,讓讀取頭 (Playback head)根據磁粉排列所產生的磁場反向產生電流,就能將資訊讀出了。

-----廣告,請繼續往下閱讀-----
http://hyperphysics.phy-astr.gsu.edu/hbase/Audio/imgaud/tape.gif
磁帶的作用原理。圖/。Tape Recording Process

磁帶發展史

1888 年,美國的工程師 Oberlin Smith 發表文章,認為應用電磁感應和電流磁效應的原理,就能設計出磁儲存的留聲機,不過 Smith 並沒有將他的想法付諸實現。而丹麥的工程師 Valdemar Poulsen 根據 Smith 的文章,在 1898 年成功設計出第一款應用磁儲存的留聲機,不過他使用的是磁性物質是細鋼絲而非磁帶。

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Telegrafon_8154.jpg/1280px-Telegrafon_8154.jpg
Valdemar Poulsen設計的磁線留聲機,如今保存在丹麥科學與技術博物館裡。圖/維基百科

Poulsen 的發明是磁儲存技術的重大突破,不過人們很快就發現用細鋼絲來記錄聲音的效率並不高,而且儲存不易,於是不少科學家紛紛投入研究改良。當時大部分的科學家都把改良的重點放在細鋼絲上,而德國的工程師 Fritz Pfleumer 則另闢蹊徑。Pfleumer 認為既然是要記錄磁場,那把細鋼絲改為塗上帶有磁粉的紙帶,理論上也有記錄效果,而且這樣便於製造和儲存,而後續的實驗證實他的想法沒錯。於是在 1928 年,Pfleumer 設計出世界上第一款磁帶錄音機。

Fritz Pfleumer和他設計的磁帶錄音機。圖/維基百科

1935 年,德國 AEG 公司得到 Pfleumer 的授權,開始量產磁帶錄音機 – Magnetophon。不過 Magnetophon 不僅昂貴而且也很難操作,因此只有軍方在使用。但在二次大戰後,隨著錄音磁帶在世界各地的使用率上升,越來越多公司開始研發更好的磁帶錄音機。

1958 年,美國的 RCA 公司開發出第一款盒式錄音磁帶,用塑膠外殼保護磁帶,並設計成可翻面播放。該產品的錄音時長和品質都與後來的卡式錄音帶相當,但因體積過大,並未在市場上獲得成功。不過該錄音磁帶卻成為其他公司產品研發的重要參考指標。

-----廣告,請繼續往下閱讀-----

1962 年,飛利浦公司發明了緊湊型磁帶,也就是我們所熟悉的「卡式錄音帶」,並於次年開始在歐洲市場被使用。當時在市場上流通的錄音磁帶有很多格式,而飛利浦公司為了搶佔市場,在 1964 年公開了卡式錄音帶的專利與格式,讓所有廠商都能免費使用。這一舉動確實讓飛利浦的卡式錄音帶一躍成為市場主流,其主要競爭對手 – 日本的索尼也不得不放棄自己的錄音帶發展計畫。

卡式錄音帶 (左)和 RCA 公司的盒式錄音帶 (右)。圖/維基百科

卡式錄音帶成為市場主流後,很快就被應用在流行音樂的播放上,而各家公司也積極地推出更好的音樂播放器。索尼雖然沒有開發出屬於自己的錄音帶,但他們在 1979 年推出世界上第一款卡式錄音帶隨身播放機 – Walkman。Walkman 的出現將卡式錄音帶推向高峰,索尼也靠卡式錄音帶和 Walkman 賺進大筆鈔票。

https://upload.wikimedia.org/wikipedia/commons/8/87/Firstwalkman.JPG
Sony Walkman 隨身聽。圖/維基百科

不過正所謂「盛極而衰」。隨著光碟和 MP3 格式在 1990 年代出現,卡式錄音帶和播放器就逐漸被 CD 和 CD 播放器所取代。2001 年,蘋果公司推出的 iPod MP3 隨身聽更是打下 Walkman 的龍頭寶座。之後卡式錄音帶就逐漸淡出大眾的生活。雖然卡式錄音帶確實退出歷史舞台,但磁帶卻沒有消失。在其他領域中,磁帶仍舊發光發熱!

磁帶的今生——數據磁帶

雖然磁帶是為了記錄聲音所開發的,但它也能記錄電腦數據。1951 年,磁帶首次被應用在記錄電腦數據上。雖然當時使用的磁帶體積非常大,能記錄的資訊也很少,但其潛力仍被科技巨頭 IBM 所看上。隨著 IBM 不斷對磁帶進行改良,1970 年代開始,電腦用磁帶 (或稱數據磁帶) 成功進入商業市場,其體積與價格不僅都是一般家庭所能負擔的,也成為個人電腦儲存數據的標準配備。

-----廣告,請繼續往下閱讀-----

但隨著光碟和硬碟的快速發展,數據磁帶在 2000 年以後也逐漸淡出電腦數據儲存的領域。正當許多人認為,數據磁帶也和卡式錄音帶一樣要退出歷史舞台時,它卻走出嶄新的一條路。

講到電腦數據的儲存,我們首先都會想到硬碟和固態硬碟,畢竟你我現在都在用,那磁帶是如何回到這領域上呢?這得益於 IBM、惠普和希捷三家公司於 1997 年聯合建立的磁帶協議——線性磁帶開放技術 (Linear Tape Open, LTO)。LTO 簡單來說是由三家公司共同開發的磁帶技術,旨在提升磁帶的性能。LTO 也像蘋果的 ios 系統一樣會定期發布新的版本,目前最新的 LTO – 9 數據磁帶,其數據的讀寫能力已不輸硬碟,而且儲存容量更達到 18 TB (若數據經壓縮後,容量可達 45 TB )。另外比起硬碟和固態硬碟,數據磁帶在資料儲存上有以下三個優勢:

  1. 網路防駭:磁帶需要磁帶機才能讀寫數據,而磁帶平時都是放在磁帶庫裡做保存,這種狀態等同設下了物理防護來隔絕駭客的攻擊,讓數據丟失和被篡改的機會降低。
  2. 資料保存:磁帶的損毀如斷裂也會丟失數據,但斷裂後的磁帶重新接上後,僅造成數百 MB 的數據損失。對於存放數據量為 TB 等級的專業儲存設備來說,這點損失可說是小事一樁。而硬碟的損毀非常容易導致數據的整個丟失,就專業儲存設備來說很嚴重。
  3. 成本低廉:1 TB 容量的硬碟售價約為 50 美元,相同容量的磁帶價格僅需 5美元。而且磁帶比硬碟更耐用,一般硬碟的壽命約為 10 年,而磁帶只要保存得當,數據保存數十年不是問題;另外硬碟運行需要電力(有時需要針對硬碟的發熱準備額外的降溫設備),而磁帶本身不耗電,只有在磁帶機中讀寫數據時才需耗電,因此比起硬碟更節省電力。
LTO-2數據磁帶。圖/維基百科

這些優勢讓有著巨量數據的科技公司 (如 Facebook 和 Google)和科學單位(CERN 和 NASA),甚至是對數據安全性有較高要求的機構 (如銀行和國家檔案館)都選擇使用磁帶來儲存數據。

2011 年,Google 的信箱 Gmail 因一次更新的 Bug,意外地刪除了 40000 多個賬戶的郵件。雖然 Google 一直有在多個數據中心用硬碟儲存數據副本,但仍有部分數據無法恢復。所幸這些數據都有備份到數據磁帶裡,才得以恢復。

-----廣告,請繼續往下閱讀-----

看到這兒,估計有些讀者已經想入手一塊 LTO 的數據磁帶了。不過別著急,上面的優點只針對有一定財力的公司和機構,一般大眾可享受不到這些好處。

磁帶聽起來很棒,想要趕快入手?修但幾勒,事情沒你想的那麽簡單!圖/giphy.com

首先磁帶是比硬碟便宜很多沒錯,但磁帶機可不便宜,磁帶機的價格至少都是幾千美元起跳。另外磁帶雖然能保存很久,但那是在恆溫、恆濕的專門儲存空間,想必你不會為了磁帶專門設立這樣的環境。所以數據磁帶的優點放在一般大眾的需求上,反而變成缺點。因此在一般的資料儲存上,硬碟和固態硬碟依舊是把磁帶壓在地上打。不過倒不是磁帶不先進,而是它先進到我們的錢包配不上它⋯⋯

LTO 磁帶機的價格,單位是美元。圖/IBM網站

隨著網路的快速發展,網路所產生的數據量已越來越高。根據國際數據資訊公司的資料顯示,網路的數據正以每年 30% – 40% 的速度增長,但目前硬碟容量增長的速度不到這個速度的一半。而數據磁帶的儲存容量正以每年 33% 的速度增長,並且沒有放緩的跡象。同時隨著磁帶機的發展,現在數據磁帶的讀寫速度已不輸固態硬碟了。因此不少人認為,磁帶很有可能成為未來儲存大數據的首選。

一些技術和發明從我們的日常生活中消失,往往是因為它們跟不上時代。但磁帶的例子告訴我們,它從我們的生活中消失後,反而在資料儲存的領域上變得更先進了。而磁帶做為我童年記憶的一環,看到它不僅沒有被時代淘汰,至今仍在專業領域上發光發熱,也讓我感到欣慰。

-----廣告,請繼續往下閱讀-----

當然不只磁帶,同樣逐漸被遺忘的光碟,或許未來突然來個重大的技術突破,讓它來個絕地大反攻,再次稱霸資料儲存界也不是沒有可能!

  1. Magnetic Tape
  2. Magnetic storage
  3. Cassette tape
  4. Linear Tape-Open

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 893 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
31 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。