Loading [MathJax]/extensions/tex2jax.js

2

16
1

文字

分享

2
16
1

錄音帶才不只是文青復古小物!來看數據磁帶如何在網路時代穢土轉生

羅夏_96
・2021/08/04 ・4351字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

編按:「磁帶」一度從80年代蝦趴到90年代、更可說是蘋果電腦經典產品ipod的始祖!本文旨在讓00後的讀者認識這個傳奇發明、90後的朋友溫故知新、80後的朋友以古鑑今!

《咒術迴戰》中的七海健人有云:「枕邊掉的頭髮越來越多,喜歡的夾菜麵包從便利商店消失,這些微小的絕望不斷積累,才會使人長大。」——泛科《童年崩壞》專題邀請各位讀者重新檢視童年時期的產物,讓你的童年持續崩壞不停歇 ψ(`∇´)ψ

你看過下面的酷東西嗎?對稍有年紀的讀者來說,它乘載了滿滿的青春回憶。但對年輕的讀者來說,卻可能看都沒看過⋯⋯

認識錄音帶已變成會暴露年齡的一種事。圖/pixabay

這東西的名稱是「磁帶」,可用來記錄各類資訊。1980 ~ 1990 年代是它的黃金年代,從音樂影視到電腦資料,都是用磁帶做為儲存媒介。各大科技公司也針對磁帶設計出不少經典的影音播放器,例如大名鼎鼎的 Sony Walkman 隨身聽。但隨著 MP3 等儲存媒介飛速發展,磁帶逐漸遭市場淘汰,也讓不少人都認為它跟 BB call 一樣走入歷史。但事實上,磁帶不僅沒有消失,甚至在專業領域浴火重生,成為許多高科技公司和科學單位所仰賴的重要儲存工具。接下來,讓我們一起來看看磁帶的前世與今生吧!

磁帶的作用原理

在講磁帶的歷史前,我們得先了解磁帶背後的作用原理。

磁帶是磁儲存 (Magnetic storage) 的一種方式,那甚麼是磁儲存呢?簡單來說,是將資料儲存在磁性媒介上的技術

磁儲存背後所應用的原理是「電磁感應」和「電流磁效應」。電磁感應是磁場的變化會產生電流的「磁生電」效應;電流磁效應則是電流的變化會產生磁場的「電生磁」效應。這兩種效應就讓科學家對資料記錄產生的新想法:既然電可生磁、磁也可生電,那將電訊號轉換成磁場並記錄在磁性物質上,之後再用這些被記錄的磁場轉換回電訊號,不就能實現資料的儲存和輸出嗎?而這個想法正是磁儲存的基本原理。

當我們要寫入資訊的時候,訊號所產生的電流會讓記錄頭 (Record head) 的電磁鐵產生磁場,而這個磁場就會改變磁帶上磁粉的排列方式,如此便將資訊以磁場排列的方式記錄下來。而要讀取的時候只要反過來,讓讀取頭 (Playback head)根據磁粉排列所產生的磁場反向產生電流,就能將資訊讀出了。

-----廣告,請繼續往下閱讀-----
http://hyperphysics.phy-astr.gsu.edu/hbase/Audio/imgaud/tape.gif
磁帶的作用原理。圖/。Tape Recording Process

磁帶發展史

1888 年,美國的工程師 Oberlin Smith 發表文章,認為應用電磁感應和電流磁效應的原理,就能設計出磁儲存的留聲機,不過 Smith 並沒有將他的想法付諸實現。而丹麥的工程師 Valdemar Poulsen 根據 Smith 的文章,在 1898 年成功設計出第一款應用磁儲存的留聲機,不過他使用的是磁性物質是細鋼絲而非磁帶。

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Telegrafon_8154.jpg/1280px-Telegrafon_8154.jpg
Valdemar Poulsen設計的磁線留聲機,如今保存在丹麥科學與技術博物館裡。圖/維基百科

Poulsen 的發明是磁儲存技術的重大突破,不過人們很快就發現用細鋼絲來記錄聲音的效率並不高,而且儲存不易,於是不少科學家紛紛投入研究改良。當時大部分的科學家都把改良的重點放在細鋼絲上,而德國的工程師 Fritz Pfleumer 則另闢蹊徑。Pfleumer 認為既然是要記錄磁場,那把細鋼絲改為塗上帶有磁粉的紙帶,理論上也有記錄效果,而且這樣便於製造和儲存,而後續的實驗證實他的想法沒錯。於是在 1928 年,Pfleumer 設計出世界上第一款磁帶錄音機。

Fritz Pfleumer和他設計的磁帶錄音機。圖/維基百科

1935 年,德國 AEG 公司得到 Pfleumer 的授權,開始量產磁帶錄音機 – Magnetophon。不過 Magnetophon 不僅昂貴而且也很難操作,因此只有軍方在使用。但在二次大戰後,隨著錄音磁帶在世界各地的使用率上升,越來越多公司開始研發更好的磁帶錄音機。

1958 年,美國的 RCA 公司開發出第一款盒式錄音磁帶,用塑膠外殼保護磁帶,並設計成可翻面播放。該產品的錄音時長和品質都與後來的卡式錄音帶相當,但因體積過大,並未在市場上獲得成功。不過該錄音磁帶卻成為其他公司產品研發的重要參考指標。

-----廣告,請繼續往下閱讀-----

1962 年,飛利浦公司發明了緊湊型磁帶,也就是我們所熟悉的「卡式錄音帶」,並於次年開始在歐洲市場被使用。當時在市場上流通的錄音磁帶有很多格式,而飛利浦公司為了搶佔市場,在 1964 年公開了卡式錄音帶的專利與格式,讓所有廠商都能免費使用。這一舉動確實讓飛利浦的卡式錄音帶一躍成為市場主流,其主要競爭對手 – 日本的索尼也不得不放棄自己的錄音帶發展計畫。

卡式錄音帶 (左)和 RCA 公司的盒式錄音帶 (右)。圖/維基百科

卡式錄音帶成為市場主流後,很快就被應用在流行音樂的播放上,而各家公司也積極地推出更好的音樂播放器。索尼雖然沒有開發出屬於自己的錄音帶,但他們在 1979 年推出世界上第一款卡式錄音帶隨身播放機 – Walkman。Walkman 的出現將卡式錄音帶推向高峰,索尼也靠卡式錄音帶和 Walkman 賺進大筆鈔票。

https://upload.wikimedia.org/wikipedia/commons/8/87/Firstwalkman.JPG
Sony Walkman 隨身聽。圖/維基百科

不過正所謂「盛極而衰」。隨著光碟和 MP3 格式在 1990 年代出現,卡式錄音帶和播放器就逐漸被 CD 和 CD 播放器所取代。2001 年,蘋果公司推出的 iPod MP3 隨身聽更是打下 Walkman 的龍頭寶座。之後卡式錄音帶就逐漸淡出大眾的生活。雖然卡式錄音帶確實退出歷史舞台,但磁帶卻沒有消失。在其他領域中,磁帶仍舊發光發熱!

磁帶的今生——數據磁帶

雖然磁帶是為了記錄聲音所開發的,但它也能記錄電腦數據。1951 年,磁帶首次被應用在記錄電腦數據上。雖然當時使用的磁帶體積非常大,能記錄的資訊也很少,但其潛力仍被科技巨頭 IBM 所看上。隨著 IBM 不斷對磁帶進行改良,1970 年代開始,電腦用磁帶 (或稱數據磁帶) 成功進入商業市場,其體積與價格不僅都是一般家庭所能負擔的,也成為個人電腦儲存數據的標準配備。

-----廣告,請繼續往下閱讀-----

但隨著光碟和硬碟的快速發展,數據磁帶在 2000 年以後也逐漸淡出電腦數據儲存的領域。正當許多人認為,數據磁帶也和卡式錄音帶一樣要退出歷史舞台時,它卻走出嶄新的一條路。

講到電腦數據的儲存,我們首先都會想到硬碟和固態硬碟,畢竟你我現在都在用,那磁帶是如何回到這領域上呢?這得益於 IBM、惠普和希捷三家公司於 1997 年聯合建立的磁帶協議——線性磁帶開放技術 (Linear Tape Open, LTO)。LTO 簡單來說是由三家公司共同開發的磁帶技術,旨在提升磁帶的性能。LTO 也像蘋果的 ios 系統一樣會定期發布新的版本,目前最新的 LTO – 9 數據磁帶,其數據的讀寫能力已不輸硬碟,而且儲存容量更達到 18 TB (若數據經壓縮後,容量可達 45 TB )。另外比起硬碟和固態硬碟,數據磁帶在資料儲存上有以下三個優勢:

  1. 網路防駭:磁帶需要磁帶機才能讀寫數據,而磁帶平時都是放在磁帶庫裡做保存,這種狀態等同設下了物理防護來隔絕駭客的攻擊,讓數據丟失和被篡改的機會降低。
  2. 資料保存:磁帶的損毀如斷裂也會丟失數據,但斷裂後的磁帶重新接上後,僅造成數百 MB 的數據損失。對於存放數據量為 TB 等級的專業儲存設備來說,這點損失可說是小事一樁。而硬碟的損毀非常容易導致數據的整個丟失,就專業儲存設備來說很嚴重。
  3. 成本低廉:1 TB 容量的硬碟售價約為 50 美元,相同容量的磁帶價格僅需 5美元。而且磁帶比硬碟更耐用,一般硬碟的壽命約為 10 年,而磁帶只要保存得當,數據保存數十年不是問題;另外硬碟運行需要電力(有時需要針對硬碟的發熱準備額外的降溫設備),而磁帶本身不耗電,只有在磁帶機中讀寫數據時才需耗電,因此比起硬碟更節省電力。
LTO-2數據磁帶。圖/維基百科

這些優勢讓有著巨量數據的科技公司 (如 Facebook 和 Google)和科學單位(CERN 和 NASA),甚至是對數據安全性有較高要求的機構 (如銀行和國家檔案館)都選擇使用磁帶來儲存數據。

2011 年,Google 的信箱 Gmail 因一次更新的 Bug,意外地刪除了 40000 多個賬戶的郵件。雖然 Google 一直有在多個數據中心用硬碟儲存數據副本,但仍有部分數據無法恢復。所幸這些數據都有備份到數據磁帶裡,才得以恢復。

-----廣告,請繼續往下閱讀-----

看到這兒,估計有些讀者已經想入手一塊 LTO 的數據磁帶了。不過別著急,上面的優點只針對有一定財力的公司和機構,一般大眾可享受不到這些好處。

磁帶聽起來很棒,想要趕快入手?修但幾勒,事情沒你想的那麽簡單!圖/giphy.com

首先磁帶是比硬碟便宜很多沒錯,但磁帶機可不便宜,磁帶機的價格至少都是幾千美元起跳。另外磁帶雖然能保存很久,但那是在恆溫、恆濕的專門儲存空間,想必你不會為了磁帶專門設立這樣的環境。所以數據磁帶的優點放在一般大眾的需求上,反而變成缺點。因此在一般的資料儲存上,硬碟和固態硬碟依舊是把磁帶壓在地上打。不過倒不是磁帶不先進,而是它先進到我們的錢包配不上它⋯⋯

LTO 磁帶機的價格,單位是美元。圖/IBM網站

隨著網路的快速發展,網路所產生的數據量已越來越高。根據國際數據資訊公司的資料顯示,網路的數據正以每年 30% – 40% 的速度增長,但目前硬碟容量增長的速度不到這個速度的一半。而數據磁帶的儲存容量正以每年 33% 的速度增長,並且沒有放緩的跡象。同時隨著磁帶機的發展,現在數據磁帶的讀寫速度已不輸固態硬碟了。因此不少人認為,磁帶很有可能成為未來儲存大數據的首選。

一些技術和發明從我們的日常生活中消失,往往是因為它們跟不上時代。但磁帶的例子告訴我們,它從我們的生活中消失後,反而在資料儲存的領域上變得更先進了。而磁帶做為我童年記憶的一環,看到它不僅沒有被時代淘汰,至今仍在專業領域上發光發熱,也讓我感到欣慰。

-----廣告,請繼續往下閱讀-----

當然不只磁帶,同樣逐漸被遺忘的光碟,或許未來突然來個重大的技術突破,讓它來個絕地大反攻,再次稱霸資料儲存界也不是沒有可能!

  1. Magnetic Tape
  2. Magnetic storage
  3. Cassette tape
  4. Linear Tape-Open

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 893 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃