Loading [MathJax]/extensions/tex2jax.js

2

6
2

文字

分享

2
6
2

人到底可以活多久?新研究指出:150 歲,是人類壽命的上限

羅夏_96
・2021/06/15 ・2873字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

拜現代醫學的快速發展,人類的平均壽命已較過往大幅提升。因此不少人都夢想著,未來或許能達到長生不老的境界。然而回到現實,我們必須先了解在生物學上,人的壽命是否存在上限?如果有,這個上限究竟是多少?近期發表在 Nature Communications 的研究,就提供我們一個新思路1

每長一歲,就離老化更近?科學家:生理年齡更關鍵

老化是人生旅途中不可避免的歷程。在生物學上,老化是一個複雜的漸進過程,涉及多種細胞與生理反應。目前科學家們整理出九種老化的特徵,在這些特徵中,最常見的是細胞會慢慢失去產生新的健康細胞來修復損傷的能力,而這會導致身體機能下降,以及罹患慢性疾病的風險增加2

老化的九個特徵。圖/參考資料 2

老化與年齡有關,而科學家們把年齡分為實際年齡生理年齡實際年齡指的是一個人已經過了多少個生日生理年齡則是從細胞層面看上去的年齡,也就是細胞離完全喪失所有功能還有多遠。這兩個數字並不總是相同,生理年齡也並非像實際年齡那樣是線性的。

比起實際年齡,科學家對生理年齡更感興趣,因為它對於我們理解老化這一複雜的漸進過程,以及發展有效對抗老化的方式更具意義。但由於生理年齡受很多因素影響,如飲食、運動、睡眠習慣、遺傳等,因此要計算一個人的生理年齡,並沒有一個好的標準。

近期,來自新加坡的生技公司 Gero 在 Nature Communications 上發表了一項新的研究。他們通過特定的方法,將普通的血液資料轉換成單一的統計數據,並能透過這個統計數據來確定生理年齡,藉此推斷出人類的壽命上限1

-----廣告,請繼續往下閱讀-----

DOSI,計算生理年齡的新變量

許多生理數值都會影響生理年齡,而不同的生理數值在生命的不同階段也會有不同的變化。研究團隊選擇全血細胞計數 (Complete Blood Count, CBC) 註1這個數值做為判定生理年齡的基礎,他們分析英國與美國的CBC數據資料庫,不過他們並沒有將重點放在 CBC 的個別數據上,例如紅血球總數、白血球總數等,而是將 CBC 所有的數據統合為一個名為 DOSI (Dynamic Organism State indicator)的綜合變量,藉此來測量生理年齡。

比起實際年齡,生理年齡對於我們理解老化這一複雜的漸進過程,以及發展有效對抗老化的方式更具意義。圖/Pexels

此外,DOSI 也代表個人在一段時間內的復原力。因為影響復原力的主要因素之一,就是身體生成新細胞來修復損傷的能力。正如前文所提到的,老化的一個特徵就是修復損傷的能力下降,於是他們便試圖讓 DOSI 成為能測量生理年齡的單一變量。

他們首先發現,健康的人面對損傷有著較強的復原力,而患有慢性疾病的人復原力則較弱,這符合慢性病患者比起健康的人有較高的生理年齡這一想法。

另外正如他們的猜想,復原力的下降確實與年齡的增長高度正相關。例如 40 歲的健康成年人,遭受損傷所需的復原時間約為 2 周;80 歲的人所需復原的時間則上升為 6 周。

-----廣告,請繼續往下閱讀-----

他們也發現,復原力的下降有兩個主要的時間點 35 歲和 65 歲,而這和我們社會中一些工作的年齡界限非常接近。前者是許多職業運動員退休的年齡;後者則是大部分人從全職工作退休的年齡。

根據這些發現,研究團隊認為 DOSI 確實可以描述並做為測量生理年齡的指標。

DOSI (復原力) 隨著老化而降低。圖/參考資料 1

看到這兒你可能會想:「DOSI真的能代表生理年齡嗎?」

其實研究團隊也有同樣的疑慮,於是他們找了另一個和 DOSI 完全不相關的數據來衡量生理年齡——每日步數

他們分析一個研究俄羅斯人身體活動數據的資料庫,該資料庫的研究會讓參與者全天穿戴記錄身體活動的儀器,藉此了解參與者的每日步數。

-----廣告,請繼續往下閱讀-----

他們驚奇的發現,每日步數的下降竟然也與年齡增長高度的正相關,而且得出的曲線跟 DOSI 很接近。於是他們便認定,DOSI 和每日步數都能測量生理年齡。

DOSI 和每日步數的下降,與年齡增長高度正相關。圖/參考資料 1

既然 DOSI 可以測量生理年齡,於是他們根據 DOSI 隨著年齡增長的下降趨勢,得出了人體復原力歸零的年齡範圍:120 ~ 150歲。

這代表,當人們的年齡到了 120 ~ 150 歲之間時,即使他們在各方面都很健康,也沒有被重大疾病折磨,他們也將完全失去復原力,最終導致死亡。而這也代表著人類壽命的上限。

DOSI 所預測出的人類壽命上限。圖/參考資料 1

從史上最長壽人瑞,探究人類壽命的門檻

關於這項研究的結論是否正確,其實還真的不知道。不過我們可以從有紀錄的最長壽者年齡一窺一二3

目前人類有紀錄的最長壽者為法國女士 Jeanne Calment,122 歲 164 天,也是至今唯一達到 120 歲以上的人,而壽命第二長的人只有 119 歲。120 歲似乎是人類壽命一個難以跨越的門檻。而這某種程度上,似乎與研究的結果相符。

-----廣告,請繼續往下閱讀-----
Jeanne Calment,有紀錄以來最長壽的人。圖/維基百科

另外與其他測量生理年齡的方法相比,這個結果也和其他研究很接近。例如有研究根據一定的計算,認為人類的壽命上限為 120 ~ 140歲4

不過由於 DOSI 是來自 CBC 數據的統合變量,因此也存在著而侷限性。許多因素都會影響 CBC 的數值,如病菌感染、藥物治療、運動、飲食習慣等。因此只要會影響 CBC 的因素,都會影響研究者對DOSI的判讀。

抗老新思路:提高人體的復原力

雖然 DOSI 做為測量生理年齡的方式仍有待更多的測試,但研究團隊認為該研究真正的突破是提出「復原力喪失是造成老化過程的根本」這個概念。

過去我們對抗老化的策略大多集中在,治療因老化過程而產生的慢性疾病與身體機能降低等問題上。這部分解釋了為何現代醫學可以有效預防和治療疾病,並大幅提升的平均壽命,但卻無法提升最高壽命。因為我們目前的抗老化措施並無法讓人體的復原力提升,因此無法突破壽命的上限。

-----廣告,請繼續往下閱讀-----

不過要如何讓人的復原力恢復也是複雜的問題,但這對於其他研究老化的科學家們來說,確實是提供一個新的想法與方向。就讓我們一起期待,未來科學家們究竟會發展出怎樣讓人意想不到的抗老化方法吧!

註釋

  1. 全血細胞計數:是一種測量血液組成細胞數量 ( 紅血球、白血球和血小板 )的檢查,會包含多種數據,詳細內容可參考各大醫院的 CBC 檢驗內容項目。
  1. Pyrkov, T.V., Avchaciov, K., Tarkhov, A.E. et al. Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit. Nat Commun 12, 2765 (2021)
  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217.
  3. 獲驗證的最長壽者列表
  4. Weon BM, Je JH. Theoretical estimation of maximum human lifespan. Biogerontology. 2009 Feb;10(1):65-71
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 893 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
老花眼怎麼辦?替換老花眼鏡好麻煩,該作雷射手術嗎?
careonline_96
・2024/06/26 ・516字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

老花眼就是眼睛調節能力隨著年紀而下降。

以前年輕的時候,眼睛像是一台很好的相機,可以看得很遠、看得很近。

所謂的老花就是調節力變差,使我們需戴另一副老花眼鏡,除了近視眼鏡外,還要再加上一副老花眼鏡,來幫助我們看近物。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
562 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

2

6
1

文字

分享

2
6
1
返老還童之術?——細胞外囊泡如何讓「年輕的血液」恢復「衰老的肌肉」?
查克爸
・2022/01/06 ・3096字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

關於返老還童這件事,科學家再度探索到一些眉目了,有可能回復你青春的肉體,喔不是,應該說是恢復為青春狀態的肌肉!

眾所皆知,身體的肌肉量會隨著年紀增長,而且從 25 歲開始,人體每年減少的肌肉量比率約 1%[1],到了 60 歲以後,減少速度還會加快。因此,「返老」的一個關鍵,就是恢復肌肉的年輕程度,或是說,如何讓老化的肌肉,又一次擁有較強的再生能力。而如何使衰退肌肉「年輕化」,便是本次介紹的研究中,研究人員想要解開的謎題。

不過這個賦予肌肉恢復再生能力的方法,可能會讓各位有點驚訝,因為匹茲堡大學及其醫學中心的研究團隊,是讓較老的小鼠,接受年輕小鼠的血液,將衰老肌肉恢復年輕肌肉所有的特徵[2]。乍聽起來,是不是有點像武俠小說裡,需用血液為引的武功,或是傳說中會飲血且永保青春外貌的吸血鬼呢?

「肌」不可失,但肌肉流失卻是自然現象

當提到肌肉時,很自然地會與運動連結在一起,要有靈活的運動能力,強健的身體肌肉必不可少。偏偏現實如此殘酷,隨著年齡提高,我們的肌肉就是會逐漸地變小、變弱,不僅如此,連受傷後的癒合能力也一併變得較差。但你可能問:「我天生身強體健,每周還固定重量訓練,維持身體狀況,確保肌肉總量。都做到這樣了,肌肉還是會減少嗎?」是的,殘酷的事實再度襲來,歲數增加就會開始流失肌肉,但好消息是,有經常規律運動的各位,比起平常較少運動的人,肌肉流失的速度較慢。

-----廣告,請繼續往下閱讀-----

而其他還有很多狀況也會造成肌肉流失,例如運動量太少或超量、來不及補充蛋白質、或是長期臥床缺少活動。如果你擔心自己或長輩的肌肉量不足,想知道有沒有評估方法嗎?有的,各國研究文獻指出,小腿圍跟肌肉量高度正相關,這時候要讓我們秀出小腿,量一量小腿圍,在臺灣一項大型研究成果顯示[3],當 50 歲以上的男、女性小腿圍,分別低於 34 及 32 公分時,就可能有罹患肌少症的風險。

既然大致知道人類肌肉老化的生理現象了,現在是時候來看看哪位「小神醫」能讓衰老的肌肉回春吧!

肌肉量隨著年紀增長而下降是自然現象。圖/Pixabay

用「細胞外囊泡」載回年輕的肌肉

研究團隊在血液中尋覓到的這位小神醫,就是近幾年在生技醫藥界火速受到重視竄起的小小明星,「細胞外囊泡」(Extracellular Vesicles, EVs)[4]。這個直徑僅 30-50 奈米的細胞外囊泡,為什麼會受到重視呢?其實,細胞外囊泡人人都有,身體各個細胞幾乎都會釋放這個顆粒,可以想像它是一個外層裹覆細胞膜的運輸裝置,內部載有蛋白質、脂質、DNA、RNA 和訊息因子等多種物質,且可以轉運給其他細胞,是細胞間交互作用及溝通的重要角色之一。換句話說,它參與細胞調控,與人的生理機制息息相關。

讀到這,你看到 EVs 與老化肌肉恢復再生能力的關聯了嗎?研究結果驗證,細胞外囊泡與骨骼肌恢復年輕有關,他們透過「異時性血液交換機制(Heterochronic blood exchange, HBE)」[5] 這一套換血方法,將年輕小鼠血液中的血清,連同 EVs 注射至肌肉受傷的老年小鼠體內,而與注射安慰劑的小鼠組別相比,肌肉受傷的實驗組小鼠,確實獲得了再生功能的強化。反之,若將年輕小鼠血清中的 EVs 去除呢?賦予受傷肌肉的回春能力也隨之消失。

-----廣告,請繼續往下閱讀-----
細胞外囊泡可攜帶多種物質(示意圖)。圖/作者繪製

EVs 載運的貨物百百種,哪一個是回春關鍵?

既然可說細胞外囊泡是位小神醫,那它帶著許許多多不同的物質,就好比是各種特效藥了。接下來,我們就得問,到底哪一個才是恢復衰老肌肉的「靈丹妙藥」。研究人員進一步分析核酸、蛋白質以及脂質後,發現叫做「Klotho」的關鍵物質。數據表明,年輕小鼠的 EVs 中,所攜帶的 Klotho mRNA 較老化小鼠來得多,且 Klotho 蛋白質總量也有差異,因此下一步就要解讀 Klotho 與肌肉再生的關聯。

在此要先了解一下肌肉前驅細胞(muscle progenitor cell),或稱肌肉先驅細胞。這一類細胞與耳熟能詳的幹細胞有點相似,都能分化成特定細胞,但前驅細胞的功能少一點、可分化的類型也少一些,且會更專一地向某細胞族群分化,就像是這次關注的肌肉前驅細胞,顧名思義就與肌肉有關。

接著我們把 Klotho 蛋白質抓回來一起討論,有人稱這個蛋白質為「長壽蛋白」,已被確定是肌肉前驅細胞的調節蛋白,並發現當年輕小鼠的肌肉損傷時,Klotho 蛋白質的表現量會上升,而年老小鼠體中則是較為恆定不變的狀態[6]。研究不僅發現 EVs 會傳遞 Klotho mRNA 給肌肉前驅細胞,也能看到老年的小鼠,其 EVs 內的 Klotho mRNA 含量少,因而導致細胞中轉譯的 Klotho 蛋白質連帶較少,而這也解釋了肌肉衰老的部分成因。

顯微鏡下的骨骼肌纖維。圖/Wikipedia

推進肌肉年輕化的研究應用

假如這個首次發表的再生醫療領域研究成果,其結論是「發現細胞外囊泡能促使老化肌肉恢復再生能力」,無疑是個引人注目的發現,但想依循這個成果實際應用,可是會處處受限。

-----廣告,請繼續往下閱讀-----

要記得, EVs 本身參與細胞調控攜帶的物質非常多,如果有一個肌肉再生療法,方法是直接注射自血液分離的 EVs,那可能發生什麼事?結果可能很美好,也可能非常糟,因為細胞將受到多種調控訊息的刺激,衰退的肌肉或許變年輕了,但其他細胞也不受控制,而這還沒談論異體移植的重重困難。

不過,這次成果值得注意,是因為研究團隊驗證 EVs 攜帶的 Klotho 有效用,那應用的道路就相對明確多了,就如同國際復健醫學中心(UPMC)的 Fabrisia Ambrosio 博士所說,他們未來的其中一個目標是,設計出載有特定貨物的 EVs,如此便有機會決定目標細胞的調控反應。換句話說,就是希望減少不可控的因素。當哪天成功達成這一步,以這個研究成果來說,人類也許便能利用 EVs 改善受傷肌肉的恢復功能、強化衰老肌肉的再生能力等。

不僅是肌肉,EVs 還可逆轉其他衰老現象

看到這,細胞外囊泡用於肌肉的各種應用方式,是不是慢慢在腦中描繪浮現了呢?不論是運動員肌肉受傷後的復原治療、年長者衰退肌肉的照護治療、長期臥床病患萎縮肌肉的再生醫學等,在未來都有可能被創造。

倘若單單使肌肉返老還童仍無法滿足,現有林林總總的研究證據顯示,EVs 還隱藏多種使人青春永駐的能力尚待開發,舉凡動脈硬化、關節軟骨再生、認知衰退的改善[7]等等都是。甚至人人聞之色變的癌症,也與 EVs 有關,因為癌細胞同樣會分泌細胞外囊泡。因此,科學家正試圖找出 EVs 內的特定物質,藉以當作標記物來篩檢癌症,例如臺灣有做肺腺癌快檢系統的研究[8]

-----廣告,請繼續往下閱讀-----

細胞外囊泡的應用層面非常廣,所以可期待的是未來將有不少與 EVs 有關的醫療,讓人維持健康的生活,而研究者們也可持續深入做其他延伸研究。

參考資料

1. 身體質量指數(BMI)正常的人就不需要運動嗎!?

2. Sahu, A., Clemens, Z.J., Shinde, S.N. et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat Aging 1, 1148–1161 (2021).

3. Hwang AC, Liu LK, Lee WJ, Peng LN, Chen LK. Calf Circumference as a Screening Instrument for Appendicular Muscle Mass Measurement. J Am Med Dir Assoc. 2018 Feb;19(2):182-184.

-----廣告,請繼續往下閱讀-----

4. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7):727.

5. Conboy, M. J., Conboy, I. M., & Rando, T. A. (2013). Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging cell, 12(3), 525–530.

6. Sahu, A., Mamiya, H., Shinde, S.N. et al. Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nat Commun 9, 4859 (2018).

7. Villeda, S., Plambeck, K., Middeldorp, J. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20, 659–663 (2014).

-----廣告,請繼續往下閱讀-----

8. 以胞外囊泡(EVs)偵測肺腺癌細胞之快檢系統研發與驗證-肺腺癌胞外囊泡小分子核糖核酸腫瘤標誌的鑑定分析

-----廣告,請繼續往下閱讀-----
所有討論 2
查克爸
3 篇文章 ・ 2 位粉絲
查克爸|醫學生物技術領域 碩士,現職是有點神祕,也與自然科學有關的評量工具研究人,專心將各種研究設計為科學教育評量工具的同時,也投入喜愛的科普領域。