1

14
4

文字

分享

1
14
4

擔心一直摔手機?像皮膚一樣長在身上就不怕了!電子皮膚的未來時代

活躍星系核_96
・2021/03/15 ・2515字 ・閱讀時間約 5 分鐘 ・SR值 530 ・七年級

文/彭柏翔、曾貴鴻、王宥豪|國⽴臺灣⼤學物理學系電子學課程學生

科學家看見的下一個變革:電子皮膚

隨著科技的演進,電子產品愈加貼近我們的生活,原本需要占滿整個房間的電腦,通常是只有國家機構才能擁有的產品,現在個人電腦已經成為家中必備的用品。

近年來,更因智慧型手機的普及,電子裝置不再侷限於房間內,電子裝置幾乎成為了我們身體的一部分,與我們如影隨形。

如同智慧型手機常標榜的,更輕、更薄、更方便攜帶成為每家廠商爭先追求的目標,但科學家們已經看到了更遠的未來,電子皮膚

-----廣告,請繼續往下閱讀-----

一個好的電子皮膚,必須滿足這些條件

電子皮膚,顧名思義就是要模仿人體皮膚的模式,在目前的發展中,如下圖,它有幾個重要的研究方向和重要功能。 

電子皮膚功能的結構示意圖:感應器,積體電路,顯示器和電源。第二種皮膚所需的電子材料的新穎功能包括伸縮性,自我修復能力,生物相容性和生物降解性。1

首先是可伸縮性(Stretchability),因為電子皮膚最終是要貼在皮膚上,所以電子皮膚必須能夠隨著我們肌肉的伸縮來延長、縮短。

不同於目前常見的矽和金屬,科學家們開始利用一些聚合物半導體來替代現有的材料,讓裝置能夠有可拉長、伸縮的特質,嵌入在上面的各種電子元件也不會在拉扯的過程中輕易斷裂。 

另外一個研究方向是自我修復的功能(Self‐Healing),自然界中的自我修復主要有兩種機制1,一種是利用血漿和催化劑在發現組織有損壞時,將化學物質送至損壞處,進而在該處合成,補上損壞的缺口,但它的缺點便是它有次數限制,當血漿或催化劑用盡後,便無法再做修復。

-----廣告,請繼續往下閱讀-----

因此科學家研發出另一類自我修復材料,他們利用材料中分子的一些特性,例如氫鍵,分子間作用力等,能夠使斷裂的分子之間重新連結,並達到自我修復的功能,而因其簡單且能重複的特性,被科學家拿來做為主要的發展方向。

接著是生物相容性(Biocompatibility)。因為未來其可能放入人體中,所以要避免有免疫反應這類天生防護系統的作用,若貼在我們現有的皮膚上,那其必定要有透氣的功能,否則沒有人能夠整天戴著它。

該如何降低電子垃圾、對環境友善?也是電子皮膚研發過程中的重要議題。圖/Wikipedia

生物降解性(Biodegradability)也是相當重要的研究重點,若電子皮膚具有生物降解性,不僅可以讓它對環境較為友善,在醫學跟生物學上也能夠實現無切除手術,目前科學家已經發現一些材料能浸泡在水中就能夠讓其溶解掉1,這對未來電子皮膚的卸下有很大的幫助。

最後,導電性也非常重要,當電子皮膚的內部元件具有導電性後,我們便能安裝上各種功能的電子設備,例如顯示器,或電路。

-----廣告,請繼續往下閱讀-----

想要能「曲」能伸的電子皮膚,好難

看完了這五大研究重點方向,在研發電子皮膚的漫漫長路上,你知道科學家大多都在哪一個地方宣告失敗嗎?

以往已經有不少科學家做了類似的實驗,但「延展性」卻是難以跨越的技術門檻。如 Sheng Wang 與團隊用 PDMS 做的電子皮膚便是在拉伸後會產生問題,難以具備良好的延展性。

為什麼做出有延展性的電子皮膚這麼困難?要做出具有延展性的一般人造皮膚並不困難,但換成電子皮膚時,電子皮膚內卻有導電用的「電極」!

當電子皮膚被拉長、伸縮時,電極也會一併受到拉扯,導致電阻值上升,使得電路無法正常運作,因此,如何讓電極既能受到拉扯,又能回復電阻值,就是製作電子皮膚最大的困難點。

-----廣告,請繼續往下閱讀-----

有困境就有突破!伸縮自如的新型聚合物

隨著技術的進步,科學家突破重重困難,終於讓具備延展性的電子皮膚登場了!2

這一次,Donghee Son 與他的團隊以奈米碳管(carbonnanotubes)作為電子皮膚中的電極、使用聚合物 PDMS-MPU-IU 作為基質。

由於 PDMS-MPU-IU 具備良好的自我修復能力與延展性,將這種聚合物和奈米碳管搭配起來後,便能使奈米碳管隨著基質的復原跟著回復,使電阻值回復到原先的大小,在具備導電性的基礎上,增加具備延展性、自我修復功能的電子皮膚。

作為電極的奈米碳管。圖/Wikipedia

此外,此材料還具備兩項優點:第一,當我們以奈米碳管作為電極時,可以使這項材料用於顯示器或感應器的電極;第二,由於PDMS-MPU-IU 之間能透過氫鍵相結合,所以我們可以更容易將多個電子元件合併為一個多功能的系統。

-----廣告,請繼續往下閱讀-----

儘管 PDMS-MPU-IU 有望成為電子皮膚的材料,但當受到超出一定大小的外力後,仍然難以在短時間內修復完畢,因此離實際應用還有一段距離。

此外,這種聚合物並未具備生物降解性,在這一個重視環保和重複使用的時代,我們難以忽視這個嚴重的缺點,如何減少這種電子皮膚造成的電子垃圾?這是是個必須要考慮的問題。

未來出門都不用手機啦!

在二十世紀,人類比以往任何時候都更加依賴技術,但是我們仍然經常忘記攜帶或笨拙地摔壞我們的手機,如果我們可以把具備手機功能的電子設備嵌入皮膚的話,或許就能減少這個困惱。

PDMS-MPU-IU 因其在室溫下的高拉伸性,高堅固性和自動自我修復功能讓其成為電子皮膚考量的候選材料。即使這項技術還遠遠不及產業水平,如同修復時間過長與裝置在上面的電路還沒辦法太複雜3,但毫無疑問,在不久的將來,電子皮膚將成為攜帶式電子設備的最前沿。

-----廣告,請繼續往下閱讀-----

致謝

本⽂源⾃於國⽴臺灣⼤學物理學系電⼦學之課程報告,感謝朱⼠維老師、程暐瀅助教的協助。

參考文獻

  1. Oh J Y and Bao Z Second skin enabled by advanced electronics  Adv. Sci. 6 1900186 (2019)
  2. Son, D., Kang, J., Vardoulis, O. et al. An integrated self-healable  electronic skin system fabricated via dynamic reconstruction of a  nanostructured conducting network. Nature Nanotech 13, 1057–1065  (2018)
  3. Jun Chang Yang, Jaewan Mun. et al. Electronic Skin: Recent Progress  and Future Prospects for Skin‐Attachable Devices for Health Monitoring,  Robotics, and Prosthetics.  (2019)
文章難易度
所有討論 1
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
2

文字

分享

0
1
2
生活中無處不在的電:靜電的應用、交流電與導電性——《神奇物理學》
商周出版_96
・2022/10/15 ・2408字 ・閱讀時間約 5 分鐘

靜電在生活上的應用

我們的抱負是替每種造成生活困難的現象平反,要幫忙找到它們會讓人好過的例子,告訴大家在哪些情況下,它們是有用(甚至更厲害)或有趣的。但是老實說,我懷疑在靜電荷上是否能做到,它好像到哪都會造成困擾。不過有時靜電荷其實也很有用,許多雷射印表機沒有它就無法工作,感謝雷射印表機讓我們不必用鉛筆寫 14 公里。

簡單來解釋一下雷射印表機的運作原理:印表機裡面有個用來列印紙張的感光鼓(Image Drum),這個鼓是帶電,會曝露在雷射光下,而它曝露的地方就會因此被放電,最後會回頭在要充電的區域著色。然後,感光鼓會轉到碳粉那裡,碳粉也帶了電荷,只會附著在仍要充電的區域。感光鼓現在有了我們想要列印的精確圖像,它被引導至紙上將碳粉卸下。

蘋果公司的雷射印表機——LaserWriter Pro 630(1993 年)。圖/維基百科

現在我們的文件已經列印好了。為了不被弄髒,之後會再用滾筒施壓加熱固定,也因此從雷射印表機出來的紙張會有點熱。我們辦公室的雷射印表機曾經在最後一個步驟故障了,還是會列印,只是要手工加固顏色。

除了列印,靜電對打掃也非常有用,但不是清潔家裡,是打掃大型工業廠房時可以派上用場。

-----廣告,請繼續往下閱讀-----

我們會用靜電過濾器來過濾空氣中的灰塵或煙灰,現在大略解釋一下它的作業過程:帶電的電線會將電子噴到要清潔的氣體中,這些電子會在該處碰到灰塵並對其充電,帶電的塵粒就會衝向另一個正電荷的電極,並在那裡落下。然後,你就只要關掉靜電過濾器的電源,並輕輕敲一敲。

殘忍的直流電與交流電戰爭

就算靜電很煩,但至少不會對身體造成重大傷害,不像從插座裡出來的電,會變得非常危險。

你肯定從小就被警告:不要讓吹風機掉進浴缸、不要摸沒有絕緣包覆的電纜!不可以把叉子插進插座裡!不管怎麼說,這些警告都有道理。但原因到底是什麼?如果我們在乾燥空氣中走在地毯上會產生高達 2 萬伏特的電壓,而且也毫髮無傷,那從插座出來的 220 伏特電壓又算什麼呢?

有些時候電會傷人,有些時候卻毫無影響,這是為什麼呢? 圖/GIPHY

吹風機泡在浴缸中不是件好事的最重要原因,是吹風機用的是交流電。你或許知道愛迪生(Thomas Edison)在 19 世紀末發明了燈泡,他希望燈泡能靠直流電運作,所謂的直流電就是電流在電路中朝一個方向流動,就像單行道一樣。

-----廣告,請繼續往下閱讀-----

除此之外,愛迪生還希望用自己的直流電專利和只能計算交流電的電表賺愈多錢愈好。

然而,愛迪生有個最大的問題,就是直流電在長距離使用時,會損失大量的能量。他其實想利用這個問題,在不斷成長的電力市場上,從許多必要的發電站賺到額外的錢。不過隨著時間過去,他愈來愈輸給立場相對的交流電派的競爭對手。

身兼發明家和企業家雙重身分的喬治.西屋(George Westinghouse)與天才物理學家尼古拉.特斯拉(Nikola Tesla)合作,他們依賴交流電每秒會改變 50~60 次的特點。

交流電的優點:可以很容易升到高壓再降壓;可以傳輸幾百公里,損失的能量比直流電少。交流電的缺點:流經生物時,對其造成的危險比直流電大。儘管有這個缺點,威斯汀豪斯和特斯拉還是繼續更大範圍的銷售他們的專利。

-----廣告,請繼續往下閱讀-----

愛迪生在大眾示威抗議下,透過電死動物發起一場可怕的反交流電運動,在悲傷的高峰時刻,他要員工替美國政府製造一把電椅,以展示交流電的致命性。但其實沒有用,交流電已經盛行起來了,因此可以替我們國家的所有電器設備(吹風機也包含在內)提供能量,無論是經過變壓器方便地使用或是直接利用。

交流電可替所有電器設備提供能量。圖/GIPHY

到底是什麼讓交流電這麼危險?我們身體裡其實一直都有微小的電交換過程在不斷發生,例如用這種方式刺激心臟跳動。但每個心跳週期中,都有一個階段心臟對干擾會特別敏感,也就是所謂的「易損期」(Vulnerable Period)。

如果我們在這個期間受到電擊,就會發生危及性命的心室顫動(Ventricular Fibrillation)。

使用交流電時,電脈衝會以每秒 50 次的頻率雙向流動,電力突波會剛好在易損期擊中我們的風險,會比用直流電還要高很多。不過,如果突波剛好在剛好的時間以適合的強度出現,那麼心臟的這種敏感性當然就有用——這就是心律調節器每天拯救生命的方式。

-----廣告,請繼續往下閱讀-----

人體的導電性比你想的還強

我們不應該讓吹風機掉進浴缸還有另一個原因,就是水的導電性比我們想像的要低。我們都以為掉進水中的吹風機非常危險,是因為水可以導電。我們以前都聽父母這樣解釋過,這沒有錯,但也並不完全正確。掉進浴缸裡的吹風機的確很危險沒錯,但那是因為人體的導電性比水好。

就算自來水的導電性很好,但它並非最好的導體之一,例如銅的導電性就是它的 10 億倍。人體的導電性比自來水更強,因為我們不僅是由水組成,還含有許多的鹽,這就是人體比洗澡水更能導電的原因,除非我們在浴缸裡加了浴鹽或尿尿(當然沒人會這麼做),那就另當別論。

如果吹風機掉進水裡,電流在我們身體裡比在水裡更容易傳播,而這種效應還會因為我們整個身體都泡在洗澡水裡而增加,這樣電流的整個接觸面積就會非常非常大。

——本文摘自《神奇物理學:從重力到電流,日常中的科學現象原來是這麼回事!》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
電子皮膚-比醫生更了解你的乳房健康
李秋容
・2015/11/29 ・1378字 ・閱讀時間約 2 分鐘 ・SR值 557 ・八年級

bfb3f156-2e3e-4453-8c83-8fd962bdf9da-1410539593753-600x450
電子皮膚具有更高的偵測靈敏度,可以發現比目前技術更深入的疾病徵兆,提早發現並提高病患的存活機率。Source: iStockphoto

我們的皮膚內分布了許多感覺受器,能讓我們以最快的速度「感受」到東西,但不是所有人的皮膚都能正常行使功能,如截肢患者或機器人。而皮膚底下藏著我們重要的器官與組織,目前大部分還是需要儀器才能進行檢測,但重病患者或是需要隨時監控健康狀態的人可能耐受不住天天跑醫院了。對此,科學家發明了一種電子皮膚,用來感知外部和監測內部,且為了使它更加貼近人類皮膚,目前的技術已經可以使它透明化且具延展性,甚至開始發展超乎皮膚的功能如記錄對話、癒合傷口和自行產生電力。而現在,電子皮膚可望取代儀器變身成為你的「專屬醫生」,連癌症它都不放過。

內布拉斯加大學(University of Nebraska)奈米科技與材料中心的研究人員,研發出了用奈米粒子做成的電子皮膚(Electronic Skin)原型,他們宣稱這項研發可以為乳癌提供早期的偵測方法。

電子皮膚具有更高的偵測靈敏度,可以發現比目前技術更深入的疾病徵兆,提早發現並提高病患的存活機率。《ACS應用材料與界面期刊》(journal ACS Applied Materials & Interfaces)所刊登的一份研究指出,像電子皮膚這樣的薄膜式觸覺裝置,可藉由接觸壓力使觸覺裝置的薄膜局部變形,描繪出接觸物體的形狀。

-----廣告,請繼續往下閱讀-----

研究團隊將聚合物和 10 奈米(nm)的金奈米粒子沉積物,結合後旋轉塗覆,建立一層接著一層的觸覺裝置,金奈米粒子一般會和 3 奈米的硫化鎘奈米粒子結合,並用於癌症偵測和治療技術中。而這個多層次的結構的組成,是由 9 層的聚合物將 3 層的金奈米粒子和 2 層的硫化鎘奈米粒子分離,再將這所有的一切都推積在由銦錫氧化物(ITO)玻璃基材上,而當鋁箔用作於頂部電極時,ITO 可作為底部電極。

這個觸覺裝置和臨床醫生執行乳房檢查相比,偵測結果有何不同呢?研究人員將模擬腫塊植入一片矽樹脂,然後將觸覺裝置壓在矽樹脂上,施以乳房檢查中臨床醫生使用的相同壓力。結果顯示觸覺裝置足以偵測到矽樹脂中 20 毫米深、5毫米寬的人工腫塊,偵測結果比臨床乳房檢查更為顯著。醫療人員通常無法發現小於 21 毫米寬的腫塊。如果醫生能夠偵測到這些過往檢查容易遺漏的不規則小型腫塊,病患的存活機率至少能提昇至 94% 以上。

這項測試也成為其他的偵測技術的替代方案,如花費昂貴的磁共振成像(magnetic resonance imaging ,簡稱MRI),和不適用於年輕女性和乳房組織較為緻密的女性的乳腺攝影術(mammography)。而研究人員也注意到了此技術可以用於掃描和發現黑色素細胞瘤(melanoma)和其他癌症病患的早期徵兆,相信在未來偵測各種病症可以更加方便與詳細。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

-----廣告,請繼續往下閱讀-----

責任編輯:鄭國威|元智大學資訊社會研究所
審校:陳妤寧

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習: