1

14
4

文字

分享

1
14
4

擔心一直摔手機?像皮膚一樣長在身上就不怕了!電子皮膚的未來時代

活躍星系核_96
・2021/03/15 ・2515字 ・閱讀時間約 5 分鐘 ・SR值 530 ・七年級

文/彭柏翔、曾貴鴻、王宥豪|國⽴臺灣⼤學物理學系電子學課程學生

科學家看見的下一個變革:電子皮膚

隨著科技的演進,電子產品愈加貼近我們的生活,原本需要占滿整個房間的電腦,通常是只有國家機構才能擁有的產品,現在個人電腦已經成為家中必備的用品。

近年來,更因智慧型手機的普及,電子裝置不再侷限於房間內,電子裝置幾乎成為了我們身體的一部分,與我們如影隨形。

如同智慧型手機常標榜的,更輕、更薄、更方便攜帶成為每家廠商爭先追求的目標,但科學家們已經看到了更遠的未來,電子皮膚

-----廣告,請繼續往下閱讀-----

一個好的電子皮膚,必須滿足這些條件

電子皮膚,顧名思義就是要模仿人體皮膚的模式,在目前的發展中,如下圖,它有幾個重要的研究方向和重要功能。 

電子皮膚功能的結構示意圖:感應器,積體電路,顯示器和電源。第二種皮膚所需的電子材料的新穎功能包括伸縮性,自我修復能力,生物相容性和生物降解性。1

首先是可伸縮性(Stretchability),因為電子皮膚最終是要貼在皮膚上,所以電子皮膚必須能夠隨著我們肌肉的伸縮來延長、縮短。

不同於目前常見的矽和金屬,科學家們開始利用一些聚合物半導體來替代現有的材料,讓裝置能夠有可拉長、伸縮的特質,嵌入在上面的各種電子元件也不會在拉扯的過程中輕易斷裂。 

另外一個研究方向是自我修復的功能(Self‐Healing),自然界中的自我修復主要有兩種機制1,一種是利用血漿和催化劑在發現組織有損壞時,將化學物質送至損壞處,進而在該處合成,補上損壞的缺口,但它的缺點便是它有次數限制,當血漿或催化劑用盡後,便無法再做修復。

-----廣告,請繼續往下閱讀-----

因此科學家研發出另一類自我修復材料,他們利用材料中分子的一些特性,例如氫鍵,分子間作用力等,能夠使斷裂的分子之間重新連結,並達到自我修復的功能,而因其簡單且能重複的特性,被科學家拿來做為主要的發展方向。

接著是生物相容性(Biocompatibility)。因為未來其可能放入人體中,所以要避免有免疫反應這類天生防護系統的作用,若貼在我們現有的皮膚上,那其必定要有透氣的功能,否則沒有人能夠整天戴著它。

該如何降低電子垃圾、對環境友善?也是電子皮膚研發過程中的重要議題。圖/Wikipedia

生物降解性(Biodegradability)也是相當重要的研究重點,若電子皮膚具有生物降解性,不僅可以讓它對環境較為友善,在醫學跟生物學上也能夠實現無切除手術,目前科學家已經發現一些材料能浸泡在水中就能夠讓其溶解掉1,這對未來電子皮膚的卸下有很大的幫助。

最後,導電性也非常重要,當電子皮膚的內部元件具有導電性後,我們便能安裝上各種功能的電子設備,例如顯示器,或電路。

-----廣告,請繼續往下閱讀-----

想要能「曲」能伸的電子皮膚,好難

看完了這五大研究重點方向,在研發電子皮膚的漫漫長路上,你知道科學家大多都在哪一個地方宣告失敗嗎?

以往已經有不少科學家做了類似的實驗,但「延展性」卻是難以跨越的技術門檻。如 Sheng Wang 與團隊用 PDMS 做的電子皮膚便是在拉伸後會產生問題,難以具備良好的延展性。

為什麼做出有延展性的電子皮膚這麼困難?要做出具有延展性的一般人造皮膚並不困難,但換成電子皮膚時,電子皮膚內卻有導電用的「電極」!

當電子皮膚被拉長、伸縮時,電極也會一併受到拉扯,導致電阻值上升,使得電路無法正常運作,因此,如何讓電極既能受到拉扯,又能回復電阻值,就是製作電子皮膚最大的困難點。

-----廣告,請繼續往下閱讀-----

有困境就有突破!伸縮自如的新型聚合物

隨著技術的進步,科學家突破重重困難,終於讓具備延展性的電子皮膚登場了!2

這一次,Donghee Son 與他的團隊以奈米碳管(carbonnanotubes)作為電子皮膚中的電極、使用聚合物 PDMS-MPU-IU 作為基質。

由於 PDMS-MPU-IU 具備良好的自我修復能力與延展性,將這種聚合物和奈米碳管搭配起來後,便能使奈米碳管隨著基質的復原跟著回復,使電阻值回復到原先的大小,在具備導電性的基礎上,增加具備延展性、自我修復功能的電子皮膚。

作為電極的奈米碳管。圖/Wikipedia

此外,此材料還具備兩項優點:第一,當我們以奈米碳管作為電極時,可以使這項材料用於顯示器或感應器的電極;第二,由於PDMS-MPU-IU 之間能透過氫鍵相結合,所以我們可以更容易將多個電子元件合併為一個多功能的系統。

-----廣告,請繼續往下閱讀-----

儘管 PDMS-MPU-IU 有望成為電子皮膚的材料,但當受到超出一定大小的外力後,仍然難以在短時間內修復完畢,因此離實際應用還有一段距離。

此外,這種聚合物並未具備生物降解性,在這一個重視環保和重複使用的時代,我們難以忽視這個嚴重的缺點,如何減少這種電子皮膚造成的電子垃圾?這是是個必須要考慮的問題。

未來出門都不用手機啦!

在二十世紀,人類比以往任何時候都更加依賴技術,但是我們仍然經常忘記攜帶或笨拙地摔壞我們的手機,如果我們可以把具備手機功能的電子設備嵌入皮膚的話,或許就能減少這個困惱。

PDMS-MPU-IU 因其在室溫下的高拉伸性,高堅固性和自動自我修復功能讓其成為電子皮膚考量的候選材料。即使這項技術還遠遠不及產業水平,如同修復時間過長與裝置在上面的電路還沒辦法太複雜3,但毫無疑問,在不久的將來,電子皮膚將成為攜帶式電子設備的最前沿。

-----廣告,請繼續往下閱讀-----

致謝

本⽂源⾃於國⽴臺灣⼤學物理學系電⼦學之課程報告,感謝朱⼠維老師、程暐瀅助教的協助。

參考文獻

  1. Oh J Y and Bao Z Second skin enabled by advanced electronics  Adv. Sci. 6 1900186 (2019)
  2. Son, D., Kang, J., Vardoulis, O. et al. An integrated self-healable  electronic skin system fabricated via dynamic reconstruction of a  nanostructured conducting network. Nature Nanotech 13, 1057–1065  (2018)
  3. Jun Chang Yang, Jaewan Mun. et al. Electronic Skin: Recent Progress  and Future Prospects for Skin‐Attachable Devices for Health Monitoring,  Robotics, and Prosthetics.  (2019)
文章難易度
所有討論 1
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
2

文字

分享

0
1
2
生活中無處不在的電:靜電的應用、交流電與導電性——《神奇物理學》
商周出版_96
・2022/10/15 ・2408字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

靜電在生活上的應用

我們的抱負是替每種造成生活困難的現象平反,要幫忙找到它們會讓人好過的例子,告訴大家在哪些情況下,它們是有用(甚至更厲害)或有趣的。但是老實說,我懷疑在靜電荷上是否能做到,它好像到哪都會造成困擾。不過有時靜電荷其實也很有用,許多雷射印表機沒有它就無法工作,感謝雷射印表機讓我們不必用鉛筆寫 14 公里。

簡單來解釋一下雷射印表機的運作原理:印表機裡面有個用來列印紙張的感光鼓(Image Drum),這個鼓是帶電,會曝露在雷射光下,而它曝露的地方就會因此被放電,最後會回頭在要充電的區域著色。然後,感光鼓會轉到碳粉那裡,碳粉也帶了電荷,只會附著在仍要充電的區域。感光鼓現在有了我們想要列印的精確圖像,它被引導至紙上將碳粉卸下。

蘋果公司的雷射印表機——LaserWriter Pro 630(1993 年)。圖/維基百科

現在我們的文件已經列印好了。為了不被弄髒,之後會再用滾筒施壓加熱固定,也因此從雷射印表機出來的紙張會有點熱。我們辦公室的雷射印表機曾經在最後一個步驟故障了,還是會列印,只是要手工加固顏色。

除了列印,靜電對打掃也非常有用,但不是清潔家裡,是打掃大型工業廠房時可以派上用場。

-----廣告,請繼續往下閱讀-----

我們會用靜電過濾器來過濾空氣中的灰塵或煙灰,現在大略解釋一下它的作業過程:帶電的電線會將電子噴到要清潔的氣體中,這些電子會在該處碰到灰塵並對其充電,帶電的塵粒就會衝向另一個正電荷的電極,並在那裡落下。然後,你就只要關掉靜電過濾器的電源,並輕輕敲一敲。

殘忍的直流電與交流電戰爭

就算靜電很煩,但至少不會對身體造成重大傷害,不像從插座裡出來的電,會變得非常危險。

你肯定從小就被警告:不要讓吹風機掉進浴缸、不要摸沒有絕緣包覆的電纜!不可以把叉子插進插座裡!不管怎麼說,這些警告都有道理。但原因到底是什麼?如果我們在乾燥空氣中走在地毯上會產生高達 2 萬伏特的電壓,而且也毫髮無傷,那從插座出來的 220 伏特電壓又算什麼呢?

有些時候電會傷人,有些時候卻毫無影響,這是為什麼呢? 圖/GIPHY

吹風機泡在浴缸中不是件好事的最重要原因,是吹風機用的是交流電。你或許知道愛迪生(Thomas Edison)在 19 世紀末發明了燈泡,他希望燈泡能靠直流電運作,所謂的直流電就是電流在電路中朝一個方向流動,就像單行道一樣。

-----廣告,請繼續往下閱讀-----

除此之外,愛迪生還希望用自己的直流電專利和只能計算交流電的電表賺愈多錢愈好。

然而,愛迪生有個最大的問題,就是直流電在長距離使用時,會損失大量的能量。他其實想利用這個問題,在不斷成長的電力市場上,從許多必要的發電站賺到額外的錢。不過隨著時間過去,他愈來愈輸給立場相對的交流電派的競爭對手。

身兼發明家和企業家雙重身分的喬治.西屋(George Westinghouse)與天才物理學家尼古拉.特斯拉(Nikola Tesla)合作,他們依賴交流電每秒會改變 50~60 次的特點。

交流電的優點:可以很容易升到高壓再降壓;可以傳輸幾百公里,損失的能量比直流電少。交流電的缺點:流經生物時,對其造成的危險比直流電大。儘管有這個缺點,威斯汀豪斯和特斯拉還是繼續更大範圍的銷售他們的專利。

-----廣告,請繼續往下閱讀-----

愛迪生在大眾示威抗議下,透過電死動物發起一場可怕的反交流電運動,在悲傷的高峰時刻,他要員工替美國政府製造一把電椅,以展示交流電的致命性。但其實沒有用,交流電已經盛行起來了,因此可以替我們國家的所有電器設備(吹風機也包含在內)提供能量,無論是經過變壓器方便地使用或是直接利用。

交流電可替所有電器設備提供能量。圖/GIPHY

到底是什麼讓交流電這麼危險?我們身體裡其實一直都有微小的電交換過程在不斷發生,例如用這種方式刺激心臟跳動。但每個心跳週期中,都有一個階段心臟對干擾會特別敏感,也就是所謂的「易損期」(Vulnerable Period)。

如果我們在這個期間受到電擊,就會發生危及性命的心室顫動(Ventricular Fibrillation)。

使用交流電時,電脈衝會以每秒 50 次的頻率雙向流動,電力突波會剛好在易損期擊中我們的風險,會比用直流電還要高很多。不過,如果突波剛好在剛好的時間以適合的強度出現,那麼心臟的這種敏感性當然就有用——這就是心律調節器每天拯救生命的方式。

-----廣告,請繼續往下閱讀-----

人體的導電性比你想的還強

我們不應該讓吹風機掉進浴缸還有另一個原因,就是水的導電性比我們想像的要低。我們都以為掉進水中的吹風機非常危險,是因為水可以導電。我們以前都聽父母這樣解釋過,這沒有錯,但也並不完全正確。掉進浴缸裡的吹風機的確很危險沒錯,但那是因為人體的導電性比水好。

就算自來水的導電性很好,但它並非最好的導體之一,例如銅的導電性就是它的 10 億倍。人體的導電性比自來水更強,因為我們不僅是由水組成,還含有許多的鹽,這就是人體比洗澡水更能導電的原因,除非我們在浴缸裡加了浴鹽或尿尿(當然沒人會這麼做),那就另當別論。

如果吹風機掉進水裡,電流在我們身體裡比在水裡更容易傳播,而這種效應還會因為我們整個身體都泡在洗澡水裡而增加,這樣電流的整個接觸面積就會非常非常大。

——本文摘自《神奇物理學:從重力到電流,日常中的科學現象原來是這麼回事!》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
電子皮膚-比醫生更了解你的乳房健康
李秋容
・2015/11/29 ・1378字 ・閱讀時間約 2 分鐘 ・SR值 557 ・八年級

-----廣告,請繼續往下閱讀-----

bfb3f156-2e3e-4453-8c83-8fd962bdf9da-1410539593753-600x450
電子皮膚具有更高的偵測靈敏度,可以發現比目前技術更深入的疾病徵兆,提早發現並提高病患的存活機率。Source: iStockphoto

我們的皮膚內分布了許多感覺受器,能讓我們以最快的速度「感受」到東西,但不是所有人的皮膚都能正常行使功能,如截肢患者或機器人。而皮膚底下藏著我們重要的器官與組織,目前大部分還是需要儀器才能進行檢測,但重病患者或是需要隨時監控健康狀態的人可能耐受不住天天跑醫院了。對此,科學家發明了一種電子皮膚,用來感知外部和監測內部,且為了使它更加貼近人類皮膚,目前的技術已經可以使它透明化且具延展性,甚至開始發展超乎皮膚的功能如記錄對話、癒合傷口和自行產生電力。而現在,電子皮膚可望取代儀器變身成為你的「專屬醫生」,連癌症它都不放過。

內布拉斯加大學(University of Nebraska)奈米科技與材料中心的研究人員,研發出了用奈米粒子做成的電子皮膚(Electronic Skin)原型,他們宣稱這項研發可以為乳癌提供早期的偵測方法。

電子皮膚具有更高的偵測靈敏度,可以發現比目前技術更深入的疾病徵兆,提早發現並提高病患的存活機率。《ACS應用材料與界面期刊》(journal ACS Applied Materials & Interfaces)所刊登的一份研究指出,像電子皮膚這樣的薄膜式觸覺裝置,可藉由接觸壓力使觸覺裝置的薄膜局部變形,描繪出接觸物體的形狀。

-----廣告,請繼續往下閱讀-----

研究團隊將聚合物和 10 奈米(nm)的金奈米粒子沉積物,結合後旋轉塗覆,建立一層接著一層的觸覺裝置,金奈米粒子一般會和 3 奈米的硫化鎘奈米粒子結合,並用於癌症偵測和治療技術中。而這個多層次的結構的組成,是由 9 層的聚合物將 3 層的金奈米粒子和 2 層的硫化鎘奈米粒子分離,再將這所有的一切都推積在由銦錫氧化物(ITO)玻璃基材上,而當鋁箔用作於頂部電極時,ITO 可作為底部電極。

這個觸覺裝置和臨床醫生執行乳房檢查相比,偵測結果有何不同呢?研究人員將模擬腫塊植入一片矽樹脂,然後將觸覺裝置壓在矽樹脂上,施以乳房檢查中臨床醫生使用的相同壓力。結果顯示觸覺裝置足以偵測到矽樹脂中 20 毫米深、5毫米寬的人工腫塊,偵測結果比臨床乳房檢查更為顯著。醫療人員通常無法發現小於 21 毫米寬的腫塊。如果醫生能夠偵測到這些過往檢查容易遺漏的不規則小型腫塊,病患的存活機率至少能提昇至 94% 以上。

這項測試也成為其他的偵測技術的替代方案,如花費昂貴的磁共振成像(magnetic resonance imaging ,簡稱MRI),和不適用於年輕女性和乳房組織較為緻密的女性的乳腺攝影術(mammography)。而研究人員也注意到了此技術可以用於掃描和發現黑色素細胞瘤(melanoma)和其他癌症病患的早期徵兆,相信在未來偵測各種病症可以更加方便與詳細。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

-----廣告,請繼續往下閱讀-----

責任編輯:鄭國威|元智大學資訊社會研究所
審校:陳妤寧

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習:
李秋容
26 篇文章 ・ 0 位粉絲
愛吃愛玩愛科學,過著沒錢的快樂日子。

0

0
0

文字

分享

0
0
0
發泡石墨可作為優良電池電極
NanoScience
・2012/07/24 ・960字 ・閱讀時間約 2 分鐘 ・SR值 580 ・九年級

-----廣告,請繼續往下閱讀-----

美國研究人員發現超薄發泡石墨(ultrathin graphite foam, UGF)可使用在鋰離子電池中作為負電極。此輕量化高導電發泡石墨具電化學穩定性,製備簡單且價格低廉,有機會與鋁箔以及鎳箔等一般常用陰極材料一較高下。

德州大學奧斯汀分校的 Rodney Ruoff 等人所研發的超薄發泡石墨是先調配一漿狀物(slurry),其成分包含磷酸鐵鋰(lithium iron phosphate, LFP)、碳黑以及聚偏二氟乙烯,接著藉由液滴塗佈法將其充填入發泡石墨內。待此混合物乾燥後便可與電池隔離膜、正電極、電解液以及電池外殼組裝形成一完整電池。根據團隊成員 Hengxing Ji 表示,當此超薄發泡石墨置於六氟磷酸鋰-有機碳酸鹽之類的電解液內時,在高達 5 V 的電壓下仍極為安定。此外,相較於鋁箔與鎳箔等傳統電極材料,此發泡石墨同時具有較高的功率和能量密度。

目前最先進鋰離子電池單體的陰極通常是由塗佈磷酸鐵鋰的電流收集極所構成,常見材料為厚度約 20–30 μm 的鋁箔。然而儘管鋁箔具有高電導率,卻因其平面結構而無法有效率地收集電子,最終會限制電池的功率密度。此外,較厚的陰極材料雖有助能量密度的增加,但卻會進一步惡化原本受限的電池功率密度。更糟的是,許多電解質溶液會侵蝕鋁箔,導致緩慢的陰極自放電以及整體電池效能下降。

圖為發泡石墨(graphite foam)。圖片來源:EarthTechling

-----廣告,請繼續往下閱讀-----

Ji 表示,超薄發泡石墨之所以能取代鋁箔的原因在於它並沒有上述任何缺點。此石墨材料提供高導電內連接支柱網路(室溫電導率約 1.3X105 S/m),大幅提昇了陰極內的電子傳導並改善功率密度。另外,具高表面體積比的超薄發泡石墨密度為 9.5 mg/cm3,相較於鋁箔而言可使用較少材料,故能增加電池能量密度。實驗數據顯示,此超薄發泡石墨/磷酸鐵鋰陰極的最大比電容(specific capacity)分別比鋁/磷酸鐵鋰陰極以及發泡鎳/磷酸鐵鋰陰極高出 23% 與 170%。

石墨在許多電解液中皆具高穩定性意味著採用石墨作為電極的電池不會腐蝕,因此不會產生自放電,這對操作於高電壓的裝置來說尤其有益。未來應用範圍包含其他電化學能量儲存元件,如燃料電池和超級電容器等。該團隊最近計畫優化此超薄發泡石墨中的孔隙大小以及內壁厚度以期更進一步提升功率與能量密度。詳見 Nano Lett.|DOI: 10.1021/nl300528p。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:劉家銘
原文網址:Graphite foam makes good battery electrode—nanotechweb.org [2012-05-18]

本文來自 NanoScience 奈米科學網 [2012-07-22] 

-----廣告,請繼續往下閱讀-----
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。