Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

抗輻射奈米碳管電晶體現身

NanoScience
・2012/10/21 ・834字 ・閱讀時間約 1 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

美國研究人員發現,採用氮氧化矽(SiON)閘極介電層的單壁式奈米碳管(single-walled carbon nanotube, SWCNT)電晶體可以抵抗劑量高達2 Mrad的伽瑪射線(gamma radiation),因此可能適合在惡劣的太空游離環境中使用。

一般的SWCNT薄膜電晶體和矽基場效電晶體都容易受到游離輻射(ionizing radiation)的影響,原因是元件中的二氧化矽閘極介電層會捕捉電洞。為克服這個問題,美國海軍研究實驗室(Naval Research Laboratory)的Cory Cress等人研發出抗輻射(radiation-hardened)SWCNT薄膜電晶體,他們採用氮氧化矽做為閘極介電層,該材料一來捕獲的載子較少,二來傾向捕捉等量的電子與電洞,由於無淨電荷累積,因此比較不受輻射影響。

地球磁場將高能帶電粒子侷限在兩道環形輻射帶中,稱為范艾倫輻射帶(Van Allen belt)。太空船繞行地球時,會重複經過這些輻射帶並且暴露於高劑量的高能電子與質子游離輻射中。Cress表示,這些輻射的能譜與入射角度相當均勻,因此可以藉由鈷六十(Co-60)在實驗室中模擬此劑量。

伽瑪射線會迅速激發碳管的電子,然後快速鬆弛,因此不至損傷碳管。不過當受激電子的能量超過碳管的位移閥值(displacement threshold, 約為90-120 keV)時,碳原子便可能脫離晶格,造成碳管的晶格結構受損。然而實驗結果顯示,他們的元件在2 Mrad的輻射劑量下發生這些情形的機率極為微小。

-----廣告,請繼續往下閱讀-----

大部分的多數載子電子元件暴露於輻射環境時,閘極介電層及絕緣層會捕捉電荷載子,造成元件效能下降。而他們研發的抗輻射SWCNT薄膜電晶體卻不受影響,原因是該元件是以擴散傳輸方式運作,電荷載子會因鄰近缺陷而成倍數散射,這些缺陷包含碳管晶格缺陷、碳管邊界及聲子等,都會影響電荷傳輸以及奈米碳管元件對輻射的反應。

未來SWCNT場效電晶體將具有短通道,載子在元件內將呈彈道式傳輸,因此碳管-金屬接觸間的性質在元件效能上將扮演著更重要的角色,值得更進一步的研究。該團隊未來的研究重點將放在操作於彈道傳輸區域的電晶體元件。詳見Electronics |doi:10.3390/electronics1010023。

資料來源:Lift off for nanotube transistors. NanoTechWeb [Sep 28, 2012]

譯者:莫偉呈(茂迪太陽能)
責任編輯:蔡雅芝

-----廣告,請繼續往下閱讀-----

轉載自 奈米科學網

-----廣告,請繼續往下閱讀-----
文章難易度
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
進軍太空產業!SpaceX 啟航,台灣太空中心佈局低軌衛星供應鏈——當商用電子產品從地面上太空,必經哪些環境測試?
宜特科技_96
・2024/12/02 ・4777字 ・閱讀時間約 9 分鐘

低軌衛星引爆全球商機,全球太空經濟在 2040 年預計突破 1 兆美元,許多國家跟科技大廠都加速投入太空市場,台灣也成立太空國家隊。但面對火箭與太空環境嚴苛的考驗,如何在地面模擬測試,使產品能在軌道順利運行?

本文轉載自宜特小學堂〈從地面到太空 商用衛星電子零組件必經的測試〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

自從 1957 年第一顆人造衛星發射後,現今已有近萬顆衛星在太空飛行,並且數量持續增加中。衛星已經跟我們的日常生活密不可分,例如地圖導航、實況轉播等,另外.俄烏戰爭中使用「星鏈」衛星通訊連網,台灣也在今年四月的花蓮地震首次使用低軌衛星技術,協助災區通訊。因此,發展衛星科技除了民生用途,也深具國家安全考量。

-----廣告,請繼續往下閱讀-----

台灣從 2019 年到 2029 年,於第 3 期「國家太空科技發展長程計畫」投入超過新台幣 400 億元,進行低軌通訊衛星的研製、規劃國家發射場與人才培育。工研院估算,至 2030 年全球每年將發射 1,700 顆衛星升空,屆時將創造至少 4,000 億美元的產值。根據美國衛星產業協(Satellite Industry Association)預計,全球太空經濟在 2040 年更有望突破 1 兆美元,其中衛星產業占比上看 88%,達 9,252 億美元。

衛星按軌道高度可分成低軌(LEO<2,000 Km)、中軌(MEO<10,000 Km)以及地球同步軌道衛星(GEO~35,800 Km),重量從幾公斤到數百公斤不等,其中 SpaceX Starlink 低軌通訊衛星近年轉商業化,開啟了新太空經濟模式。另外立方衛星(CubeSat)造價門檻相對低,成為切入衛星技術研究的熱門標的。衛星產業鏈日趨成熟,以及衛星發射和製造成本的降低,帶來龐大的太空商機,相應的電子零組件需求亦隨之增加,讓不少廠商對邁向太空市場摩拳擦掌。

衛星依據軌道高度的分類。圖/宜特科技

衛星是由幾個次系統整合而成,包含姿態控制、電力、熱控、通訊、推進和酬載(Payload)…等。例如遙測衛星(Remote Sensing Satellite),它的功能是繞地球軌道拍攝照片,其中姿態控制次系統使鏡頭能維持對著地球方向;影像感測器則是攝取影像的酬載,電力次系統負責電力儲存與電源管理,最後將照片透過通訊次系統傳回地面。

衛星內部有我們熟知的各種電子零組件,正統太空規的電子零組件要價不斐,且某些零件因各國管制政策不易取得,而商用現貨(Commercial Off-the-Shelf,簡稱 COTS),例如電腦、手機和汽車採用的電子零組件,價格親民、性能良好,供貨也較充沛,近年採用 COTS 執行太空任務是相當熱門的趨勢。

-----廣告,請繼續往下閱讀-----
衛星的次系統。圖/宜特科技

那麼,COTS 電子零組件要上太空,必須經過哪些驗證測試?本文將從火箭發射環境、太空環境,逐一說明 COTS 欲跨入太空應用將面臨的挑戰和驗證測試方式。

3.2.1 發射!火箭發射對電子零組件的影響

1. 振動測試

衛星在地面製造組裝,需考量溫度、濕度、粉塵汙染等影響;組裝好的衛星搭乘火箭從地面發射,首先會承受火箭的劇烈振動,振動測試機可以在地面模擬火箭發射,以垂直與水平方向進行振動測試。不同的火箭有不同的振動大小,例如美國 SpaceX 獵鷹重型火箭的振動測試參數,以每秒鐘 10~2,000 次的振動頻率,重力加速度到幾十倍,振動測試可用來確認衛星或電子零組件在經歷發射過程仍能正常運作。

美國 SpaceX 獵鷹重型火箭發射。圖/p.7, SPACE X FALCON USER’s GUIDE, August 2021

立方衛星振動測試。圖/Sat Search

2. 音震測試

火箭發射過程會產生音震(Acoustic Noise),尤其是面積大且薄的零件,特別容易受音震影響,例如太陽能電池板,天線面板等。音震可能會使這些零件破裂、機構損壞、功能異常。音震艙就是用來模擬火箭所產生的音震,測試時將液態氮汽化,此時液態氮體積會瞬間膨脹數百倍產生巨大壓力,再經由喇叭將氣流動能轉為聲波導入音震艙,測試音震艙內的衛星或零件。

音震艙測試。圖/European Space Agency

-----廣告,請繼續往下閱讀-----

3. 衝擊測試

當火箭離開地面抵達一定的高度時,各節火箭引擎開始陸續分離,接著整流罩展開釋放衛星入軌,這些過程都會產生衝擊(Shock),對衛星內部零件的焊接點、晶片,或其他脆性材料都是嚴苛的考驗。因此需要在地面先進行衝擊測試,了解衛星與其電子零組件對巨大衝擊的耐受程度。

火箭整流罩打開釋放衛星。圖/German Aerospace Center 

衝擊測試。圖/金頓

4. 電磁相容性測試

此外,因為各種電子零組件集中在火箭狹小空間內,衛星跟火箭之間的電磁干擾可能會影響任務,因此衛星在發射前也需經過電磁相容性測試(EMC),確保衛星所使用的電子零組件不會與火箭之間互相干擾。

電磁相容性測試。圖/ European Space Agency

  1. 熱真空循環測試

低軌衛星以每秒七公里的時速飛行,大約九十分鐘繞行地球一圈,衛星繞軌飛行處於真空環境,同時也會面臨溫差挑戰,當衛星被太陽正面照射時,其溫度高達攝氏 120 度,遠離太陽時,溫度可能低到零下 120 度。另外,真空環境可能使電子零組件因散熱不良燒毀,真空低壓也會造成零組件材料分解、腔體洩漏(Leak),或是零組件釋氣(Outgassing)產生汙染。

熱真空循環測試(Thermal Vacuum Cycling Test)可模擬太空環境真空狀態與溫度變化,測試時會將衛星或電子零組件架設於極低壓力的真空艙內,再經設備以輻射、傳導方式對衛星或電子零組件升降溫以模擬太陽照射,此時衛星或電子零組件處於通電運作狀態,須即時監控觀察其功能是否正常。熱真空循環通常測試為期一週甚至更長,也是衛星或電子零組件常見的失效項目。

-----廣告,請繼續往下閱讀-----

熱真空艙測試。圖/TriasRnD

  1. 輻射測試

少了大氣層的保護,電子零組件在太空環境會直接面對輻射的衝擊。以地球軌道而言,輻射環境包含輻射帶(Van Allen Belts)、銀河宇宙射線(Galactic Cosmic Rays,簡稱GCR)以及太陽高能粒子(Solar Energetic Particles,簡稱SEP),這些輻射環境充斥大量的電子、質子,以及少數的重離子(Heavy Ion)等,若擊中衛星的電子零組件可能造成資料錯亂(Upset)、當機,甚至永久性故障。衛星在軌道運行壽命短則幾個月,長則數十年,衛星在軌道運行時間越長,受輻射衝擊影響就越大。

地球軌道輻射環境。圖/宜特科技

輻射對電子零組件的影響有以下三大類:

-----廣告,請繼續往下閱讀-----

太空輻射對電子零組件的三大效應。圖/ESA

  1. 總電離劑量效應(Total Ionizing Dose Effect,簡稱TID)

電子零組件在太空環境長期累積大量質子與電子輻射是 TID 效應的主因, TID 會造成 MOS 電晶體 Threshold Voltage 緩慢飄移,零件漏電因此逐漸增加,漏電嚴重時則會導致零件燒毀。衛星可視為大型的無線行動裝置,依賴太陽能蓄電,電力相當珍貴,若衛星內諸多的電子零件都在漏電,將造成衛星電力不足而失聯或失控。

  1. 位移損傷效應(Displacement Damage,簡稱DD)

質子對電子零組件會產生另一種非輻射效應,稱為位移損傷效應(DD),屬長期累積大量質子的物理性損傷,質子會將半導體零件內的矽原子打出晶格外,形成半導體的缺陷,零件漏電也會逐漸增加,其中光電零件對 DD 效應較敏感,例如影像感測元件,DD 會造成影像品質降低,另外也會使衛星使用的太陽能電池(Solar Cell)轉換效率下降。

  1. 單一事件效應(Single Event Effect,簡稱SEE) 

TID 與 DD 可以看成慢性病,是電子零組件長期在軌累積大量質子與電子作用所造成的漏電效應,SEE 就是屬於急性症狀,隨機發生又難以預測。質子與重離子都會造成電子零組件的 SEE 效應,而重離子比質子更容易引發 SEE,太空環境的重離子數量雖然相對少,但殺傷力強,一顆重離子就可能使電子零組件當機或損壞。

-----廣告,請繼續往下閱讀-----

SEE 造成的故障可分成 Soft ERROR 與 Hard Error 兩大類。 Soft Error 的徵狀為資料錯亂、當機、功能異常等,重啟電路可恢復其運作,但若電子零組件對輻射很敏感,當機頻率過高則會影響任務執行,因此需以輻射測試評估其事件率(Event Rate)。Hard Error 則是永久性故障,例如重離子容易引發半導體零件栓鎖(Latch-Up)現象,若沒有對應機制,零件可能因大電流燒毀,因此 SEL (Single Event Latch-Up)是太空電子零件輻射耐受度最重要的指標之一。

單一事件效應的各種現象。圖/宜特科技

太空環境有各種能量的粒子,包含:質子、電子、重離子…,能量越高的粒子可穿透越厚的物質或外殼。低能量的粒子可被衛星外殼(鋁)阻擋,但衛星發射成本主要以重量計價,外殼厚度相當有限(通常為幾毫米厚的鋁材);而高能量的粒子則會穿透衛星外殼,影響電子零組件運作,因故使用於太空環境的電子零組件必定會被輻射影響,在上太空前必須經過輻射測試評估其特性。COTS 電子零組件,都有一定的抗輻射能力,但是必須經測試了解輻射耐受度是否適用於太空任務需求。

美國 NASA 的太空輻射實驗室。圖/NASA

COTS 電子零組件上太空前必須經過「發射環境測試」,包括模擬火箭發射時所產生的振動、音震、衝擊、電磁相容性測試,以及太空環境熱真空循環和輻射測試等,更多的測試項目就不一一細數,通過這些測試後,更重要的是取得「飛行履歷」(Flight Heritage),將產品發射上太空,若能成功執行各種任務,取得越多飛行履歷,產品的身價就越高,太空產業非常重視飛行履歷,飛行履歷也是產品的最佳保證書!

-----廣告,請繼續往下閱讀-----

宜特是亞洲最完整的太空環境測試第三方實驗室, 2019 年與國研院太空中心合作推動台灣太空產業發展。自 2021 年加入台灣太空輻射環境驗測聯盟以來,我們已完成多種電子零組件的輻射測試,涵蓋了類比、數位、記憶體、射頻等。我們將持續建構更完整的太空環境驗證測試能量,提供一站式服務。協助廠商可專注於產品的設計與製造。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
13 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

0
0

文字

分享

0
0
0
DNA-PAINT:轉瞬標記 奈米解析
顯微觀點_96
・2024/10/03 ・3586字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

DNA-PAINT:易脫落的奈米「漆」

DNA-PAINT 屬於單分子定位顯微術(SMLM)大家族一員,它突破繞射極限的途徑類似 PALM 與 STORM:以閃爍(blinking)的螢光讓多個目標分子的位置輪番呈現,最後將多次定位影像以電腦疊合重建成完整的超解析分子地圖。結合電腦運算輔助和光學成像的統計原理,DNA-PAINT 可以達成極端細緻的 RESI 定位術,清楚區別兩個距離不到 1 奈米的螢光來源。

單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。

DNA-PAINT 的特別之處,在於利用「不牢固」的螢光標記製造閃爍效果。不同於 PALM, STORM 以光調控「固著在目標上」的螢光來源,DNA-PAINT 使用與目標連結力量薄弱的螢光探針,結合目標之後會快速分離。只有在探針與目標結合的瞬間,同時被激發光照射,探針上的螢光團才能發出螢光。目標分子與螢光探針分離後,依然保有和下一個探針結合的能力,因此不必擔心螢光團的放光能力衰退。

-----廣告,請繼續往下閱讀-----
Dna Barcoded Labeling Probes For Highly Multiplexed Exchange Paint Imaging
DNA-PAINT 原理:Docking strand(嵌合序列)附著在人造 DNA 構造上,溶液中漂浮著成像序列(Imager strand),成像序列上的螢光團不容易被激發(膚色)。成像序列與嵌合序列結合時,螢光團才會被激發(橘紅色) 圖片來源:Agasti, Sarit S., et al. Chemical science 8.4 (2017): 3080-3091.

DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。

DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。

因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。

Direct Visualization Of Single Nuclear Pore Complex Proteins Using Genetically‐encoded Probes For Dna‐paint
以 DNA-PAINT 對細胞核膜上的 Nup96 核孔蛋白進行 3D 定位。在圖 a. 中,不同的螢光色彩象徵不同的空間深度。圖 b. 箭頭所指處,則是成對出現的 Nup96 蛋白。比例尺:圖 a. 2000nm, 圖 b. 50 nm. 圖片來源:Schlichthaerle, Thomas, et al. Angewandte Chemie 131.37 (2019): 13138-13142.

核孔複合體(Nuclear Pore Complex)上的 Nup96 蛋白是科學家經常探索的重要目標,即使是超解析顯微術也未能在自然狀態下呈現其構造。隆曼團隊以 RESI 對 Nup96 進行定位,不但清楚定位出符合電子顯微鏡拍攝的 8 對 Nup96 蛋白沿著核孔形成環狀結構,還能清楚呈現每對蛋白之間的 11 奈米的間距。

-----廣告,請繼續往下閱讀-----

結合序列成像(Sequential Imaging)與 DNA-PAINT 兩種技術,RESI 讓科學家得以運用一般門檻的顯微儀器、耗材,就能達到超乎以往想像的定位解析度。而 DNA-PAINT 這種巧妙的定位方法並非一蹴而就,而是數種有趣的技術累積而成。

PAINT 起源:不穩定又不專一的尼羅紅

PAINT(Point Accumulation for Imaging in Nanoscale Topography, 點累積奈米成像術)系列定位法的螢光探針由一個螢光染劑分子與一個分子探針(probe)構成。親和性抗體、寡核苷酸(短小 DNA 片段)都可作為分子探針的材料,再由此探針結合目標分子或其上的抗體。除了 DNA-PAINT, PAINT 家譜上還有 FRET-PAINT, Exchange-PAINT, u-PAINT 等不同特質的成員。

在 2006 年由沙羅諾夫(A. Sharonov)和霍克崔瑟(R. M. Hochstraser)發表的第一代 PAINT 中,僅僅使用螢光染料尼羅紅(Nile Red)為標記。這種染劑在含水溶劑中無法發光,必須進入磷脂層等非極性環境才能展現其螢光活性。

因此尼羅紅無須結合探針,只要以低濃度加入樣本溶液中,就能觀察到其進入細胞膜脂雙層、大型磷脂囊泡(large unilamella vesicles)表層等疏水性環境中,受到激發放出螢光。尼羅紅與磷脂層的親和性不強,很快就會再次脫離,也容易遭到光漂白(photobleaching)而失去螢光,因此可作為一種閃爍的螢光定位標記。

-----廣告,請繼續往下閱讀-----

尼羅紅可以結合所有疏水性(hydrophobic)的構造,無法真的標記特定分子,缺乏分子生物學重視的專一性。但它開啟了 PAINT 以「不牢固螢光染劑」增進解析度的先河。與多數螢光顯微術追求螢光團穩定性與強度的定位技巧背道而馳。

Image 2
圖 a. 以尼羅紅標記磷脂層的直接成像;圖 b. 以 PAINT 技術進行上千次成像重建後的磷脂層定位。兩者定位解析度形成強烈對比。圖 c. 為 uPAINT 概念:接受激發光(綠色)照耀的螢光探針才會發光(紅色),漂浮在激發光範圍外的螢光探針保持黯淡(粉紅),即使未結合目標的探針也能發光,且僅能標記細胞膜表面的目標。圖片來源:Nieves, Daniel J., et al. Genes 9.12 (2018): 621.

4 年後,吉安諾內(G. Giannone)和荷西(E. Hosy)以具目標專一性的配體,例如抗體蛋白,連接螢光團形成螢光探針,達成具有專一性的 PAINT 超解析定位。透過進步的生化技術製作配體,這種技術幾乎可以定位所有類型的目標,因此被命名 universal-PAINT, 簡稱 uPAINT。

uPAINT 可以提升多種目標的定位解析度,但其螢光探針即使游離在溶液中,也能接受激發、放出螢光,形成背景雜訊。且結合螢光染劑的抗體無法穿透細胞膜,因此只能定位細胞膜上的目標。

因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。

-----廣告,請繼續往下閱讀-----

同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。

無限調色的虛擬油漆:Exchange-PAINT

2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。

這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。

他們每次只加入一種成像片段,針對一種目標進行閃爍(blinking)定位,並由電腦套上特定顏色,接著洗去既有成像片段,再加入下一種成像片段。最後將所有目標的獨立定位圖疊合起來,便能得到完整的奈米級定位。

-----廣告,請繼續往下閱讀-----
Multiplexed 3d Cellular Super Resolution Imaging With Dna Paint And Exchange Paint 2
圖 a.為 Exchange-PAINT 概念,每一輪定位針對一種目標,完成後洗去探針,再加入下一種探針進行定位,最後將每一輪的定位影像疊合起來。圖 c., 圖 d. 表現 Exchange-PAINT 的多工能力, 1 個 DNA 摺紙樣本上的 10 種不同目標可以依序定位,賦予顏色(實際上使用相同螢光染劑,不同成像片段),再以電腦重建疊合。每一種目標的定位都進行了 7500 次拍攝。圖 d., 圖 e. 中的比例尺為 25nm. 圖片來源:Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.

只需要一種螢光染劑接上多種成像片段,Exchange-PAINT 便能以基本的實驗設備達到多重目標的超解析定位,不像多重標記的 DNA-PAINT 受限於染劑顏色數目,Exchange-PAINT 的門檻在於互不相干寡核甘酸片段的數目,在實驗中幾乎不可能窮盡。而可以使用一般螢光顯微鏡與螢光染劑達到埃(ångström)解析度的 RESI 技術,就是將 Exchange-PAINT 的多種目標定位應用於單種目標定位,透過不同探針標記同種目標製造發光順序落差,大幅提升解析度。

在「眼見為真」的生物學影像趨勢中,「增加偵測光子數量」是螢光顯微技術提升解析度的基礎光學原理,也是最主流的技術改良方向。而 DNA-PAINT 系列技術跳脫了對光子數量的追求,不受螢光染劑的光漂白及螢光壽命限制,以快速脫落的探針另闢蹊徑,使低成本的超解析影像得以實現,更展現生物物理學蘊藏的廣泛技術可能性。

  • DNA-PAINT 的最新應用:RESI序列成像解析度增強術
  • Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.
  • Agasti, Sarit S., et al.  Chemical science 8.4 (2017): 3080-3091.
  • Nieves, Daniel J., Katharina Gaus, and Matthew AB Baker. Genes 9.12 (2018): 621.
  • Schlichthaerle, Thomas, et al.  Angewandte Chemie 131.37 (2019): 13138-13142.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。