0

0
0

文字

分享

0
0
0

「你對釣魚台的看法是?釣魚台的重要性是什麼?」國立海洋科技博物館籌備處主任柯永澤博士表示……

PanSci_96
・2012/10/11 ・3388字 ・閱讀時間約 7 分鐘 ・SR值 521 ・七年級

「哇!是海!」PanSci小編忍不住盯著窗外的海還有大船看。國內科學展館第三站來到位在基隆八斗子,即將進入試營運階段,擁有超級無敵海景海科館

鐵灰色現代外觀的館舍,沿著海邊山丘而建,沒有唐突的外表,很符合基隆陰鬱多雨的景象。海科館外觀和四周景物連成一片,以曲線輪廓表現「海洋」、直線和簡單的幾何表現「科技」,但這個最新的國家級科學博物館要如何呈現其實在台灣被嚴重忽略的「海洋科學」呢?海科館設在港都基隆將扮演起什麼樣的角色?這就得問問負責建館計畫忙翻天、關心且以實際行動參與社會議題的籌備處主任柯永澤博士了(如果沒意外的話正式營運之後就是館長啦!)

P:你對釣魚台的看法是?釣魚台的重要性是什麼?

柯:從最近的時事來看:南海和釣魚台爭議、中國稀土紛爭、墨西哥灣漏油、北海爭議…都和海洋有關。

墨西哥灣事件反映出陸上資源漸漸耗盡,於是開始轉探勘海洋資源的趨勢;加上美、日聯合控告中國壟斷稀土,這也顯示哪個國家掌握海洋資源誰就擁有優勢。英國也是個例子,北海的石化燃料資源對英國發展金融產業來說是一項很關鍵的條件。

南海、釣魚台的爭議只是反映出各國開始爭奪資源的衝突;島不是重點,爭的是海底下的資源。海洋資源可以簡單分成生物性非生物性,生物性就像是漁場,非生物性就像是潮能、礦產、燃料;擁有島嶼主權的國家就擁有這些資源。

從航海時代之後,有形或無形的海洋資源左右一個國家未來的發展。現在的「海洋國家」都具備海底探勘或者海洋工程技術,這些科技不是幾個研究單位或者小國家玩得起的,因為那都是整合性研究,像是有能力製造深海潛水艇,就表示機電、工程、海洋學等領域發展有一定的水準。而且這又是循環-有能力能探勘海底資源的強國,才有資源能再發展更多海洋技術。

P:海洋對台灣的重要性?

柯:就光是氣候變遷來說,「海洋」是關鍵。洋流左右著陸地的氣候,像是聖嬰和反聖嬰現象,只要太平洋東岸的湧升流改變,就影響了幾千公里外的太平洋西岸的降雨量。

目前颱風路徑可以相當準確預測,因為其是受大氣環流控制,可是對於雨量與強度卻無法準確預測,而僅能作觀測,因為其是受海洋可以提供多少能量所控制,而這方面的資訊不完整。原本颱風只會在太平洋赤道5度附近形成,但是暖化的關係,現在連北緯10度都能形成颱風!形成颱風的區域條件變寬,就越難預測颱風的動向。目前的氣象資料也多從大氣取得,像是衛星、雷達雲圖,海洋的資料不多,但海洋卻又影響著陸地的天氣,增加海洋測站對於精準天氣觀測來說就變得非常重要。

不只是氣候變遷下的天氣預測,海洋可能也是解決的途徑。海洋面積大,控制著溫室氣體的「收支」,還有接收來自陸上河流的碳排放。海洋中有幾百萬平方公里的海面有很豐富的營養鹽,但缺微量元素鐵,因此綠藻行光合作用效果不好,無法大量吸收二氧化碳,有科學家到特定區域灑鐵粉誘發它們吸收大量的二氧化碳,海洋中二氧化碳量下降,大氣中的二氧化碳自然會再溶入海洋,而使大氣二氧化碳含量下降,這就是一個地球工程利用海洋資源解決暖化問題的例子,這都不是陸上象徵性舉辦種樹活動能達到的效果。

潮境海洋中心,是海科館的行政中心和研究單位所在地。

P:你希望海科館對推廣海洋科學扮演什麼角色?

柯:海洋科學比較不被民眾重視,其中一個原因是學校沒有教,教科書沒有提到,老師也不懂;教學的人都不懂海洋了要怎麼教海洋?我希望海科館能介紹國內既有的海洋科技,配合館內的研究部門自己策展或者從事一些基本的海洋研究。

未來海科館有三個館區,分別為已於今年6月底開放的區域探索館(非主題探索館),預定明年6月底準備試營運的主題館(主要展館),以及BOT預定106年完工的水族館。。

四層樓的主題探索館最上面會規劃成餐廳,底下三樓介紹一些當地的海洋文化。主館保留了日據時期填海造陸興建的「北部火力發電廠」的鍋爐室,利用挑高的建築結構作為「深海展示廳」。另外還有國內最大的IMAX劇場。

園區附近也會分期發展,像是前面(指行政大樓前)這岸邊會規劃成潮間帶教育區,配合附近的漁港作浮潛觀光。不過在那之前我們得先調查附近有什麼魚種,還要讓魚群熟悉人類,敢親近人,要這麼做就是得輔導漁村轉型生態旅遊。至於附近的街景也有規劃要改造,但難度很高。

要做的事很多,還需要地方政府、民眾的理解跟支持才行。

海科館蠻強調從鄰近的海洋出發,讓民眾認識海。像海科館也一直有支持附近的軟絲復育,就是《產房》紀錄片提到的那群潛水教練,他們利用竹叢作為軟絲產卵的空間,效果很好;而且因為沒有捕捉,所以那裡的軟絲都很親近人,可以近距離觀察它們。

我們也和海洋大學合作,希望培養專業領域的學生來這服務學習,讓學生不只在學校學,也要知道怎樣推廣這些專業知識。

P:海科館和海生館有什麼不同,會競爭嗎?

柯:海洋領域可以分成三大類:海洋科學-包括物理、化學、生物、地質,有些國家-像是美國-還有包括聲學;工程;水產科技海洋生物雖然只是一小領域,相對來說不是關鍵技術,但為什麼容易受到重視?因為海洋生物資源貼近我們的生活,而且吸引學童,很適合作為海洋教育的切入點。

另外,海科館和海生館都隸屬教育部,但都是由民間公司負責營運,採BOT加OT的模式,雖然要自己承擔營運盈虧的壓力,但也會比較容易有創新的思維。

P:對台灣開採可燃冰或海洋能源發展的看法

柯:可燃冰是很棒的資源,很多國家都想開採,不過目前在技術上都很有困難,而且風險又很大;可燃冰主要成份是甲烷,一不小心會起火,而且如果弄不好,大量外洩到大氣中,會改變氣候,非常危險!現在有國家是明文禁止開採,當然也有國家-像是日本就積極研究。台灣的海洋研究預算遠低於鄰近的日本和韓國,沒有技術能開採可燃冰,現在只有探勘可燃冰的含量。

國內有在研究怎麼利用周遭海域的潮汐能,可是潮汐變化太大,不能穩定發電。我們的研究團隊最近發現東岸的黑潮潮汐能蠻穩定的,但是淺層的潮汐能太弱,要深一點才能有發電的潛能。其他的海洋技術研究可能要問海洋中心會比較清楚。

台灣的研究環境太強調論文發表了,很多攸關人類和國家發展的研究因為要花上很長的時間,也比較強調應用面,這些議題的研究相對比較難有漂亮的論文。在這樣的研究風氣下重要的研究就很難有科學家願意投入。

超級無敵海景辦公大樓

採訪結束後柯主任還帶小編參觀水族研究區,雖然Z編參觀過屏東海生館的後棟,海科館的水族規模小了許多,但是看到活生生的海洋動物還是忍不住多看幾眼加尖叫!

 

這些巨大的龍膽石斑是水試所提供的,當時只是小魚,現在都跟人一樣大了。(這也顯示海科館真的籌備很久…)

▲很想拿手去餵硨磲貝的P(其實是在玩弄海葵對陰影的反射動作)

這些海洋生物目前由兩位研究同仁和替代役負責照顧,也在研擬治療一些魚病的方法。

 

就期待海科館開幕後告訴我們更多海洋的故事囉~(是否該來篇海科館開箱文?)

 

延伸閱讀-PanSci小編遊台灣科學展館系列:

1. 「如果寶傑邀請你去擔任來賓,你會……?」科博館周副館長表示…

2. 「外星人如果造訪地球,是福是禍?」台北天文館資訊組徐組長表示…

文章難易度
PanSci_96
954 篇文章 ・ 240 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 375 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策